VOC White Paper

Meeting #2 August 1, 2014

White Paper Overview

- Role of VOCs in ozone and PM2.5 formation
 - Technical analysis
 - Atmospheric chemistry
 - VOC to NOx ratios
 - Major sources
- Implications of alternative strategies
 - Potential detrimental effects
 - Rationale for NOx and VOC control strategy
- Potential approaches under consideration

Overall Goal: Attainment of Federal Standards

Ozone Trend

PM2.5 Trend

Current Standard – 12 μg/m3

- Attain by 2020-2025

- Current Standard 8-hour average – 75 ppb
- Attain by 2032

Role of VOCs: Ozone Formation

- Ozone levels a function of VOC/NOx ratios*
- NOx limited decreasing NOx reduces ozone; decreasing VOC has little effect
- VOC limited decreasing VOC reduces ozone; decreasing NOx has little effect or increases ozone

Region	VOC/NOx Ratio
Inland Empire/Mountains	NOx Limited
San Gabriel Valley	VOC Limited (Transitional)
Central Los Angeles	VOC Limited

*Many factors, including temporal and spatial, add complexity

OZONE – 2013 Number of Days Exceeding the Federal Standard (8-hour average > 0.075 ppm)

Role of VOCs: PM Formation

- Primary Organic Aerosols
 - Science more developed
 - Typically from combustion (including mobile) sources
 - Does not account for significant portion of measured particulates
- Secondary Organic Aerosols (SOA)
 - Generated from the oxidation of organic gases in the atmosphere
 - SOA yield function of total organic PM available
 - More SOA produced in highly polluted environments
 - Higher carbon chain organics and aromatics form most SOA
 - Additional studies underway

Intermediate (I-VOC) and Semi-Volatile (S-VOC) Organic Compounds

- Organic compounds that occur in gas phase but may not be defined as VOC
- Form ozone
- Efficient Secondary Organic Aerosol (SOA) source
- May be significant emission source
 - Evaporation still occurs, but slower evaporation rate
 - Increases in temperature lead to significant enhancement in volatility
- Recent research completed on I-VOC and S-VOC
 - Likely to be significant source of SOA
 <u>Examples</u>
 Intermediate (C12-C23) and Semi-Volatile (C24-C27) alkanes
 Solvents used in coatings and adhesives
 Low Vapor Pressure VOC consumer product solvents

PM2.5 – 2013* Annual Arithmetic Mean μg/m³ (Federal Standard = 12.0 μg/m³)

*Based on preliminary invalidated data.

VOC Sources* (2023)

Regulated by SCAQMD

Regulated by CARB

* Excludes LVP-VOC contribution Source: 2012 AQMP – (excluding biogenic)

Top 10 VOC Source Categories*

NOx Sources (2023)

Regulated by SCAQMD
 Regulated by CARB
 Source: 2012 AQMP

Top 10 NOx Source Categories

Regulated by SCAQMD
 Regulated by CARB
 * Excludes I-VOC and S-VOC contribution
 Source: 2012 AQMP

Top 10 PM2.5 Source Categories

Implications of Alternative VOC Strategies

Strategy	Inland Empire & Mountains (NOx Limited)	San Gabriel Valley (VOC Limited)	Central Los Angeles (VOC Limited)
	Ozone reduction;	Limited ozone increase;	Ozone increase;
NOx Only	Limited PM reduction	Limited PM reduction	Limited PM reduction
	Limited ozone reduction;	Ozone reduction;	Ozone reduction;
VOC Only	Limited PM reduction	Limited PM reduction	Limited PM reduction
	Ozone reduction;	Ozone reduction;	Limited ozone reduction;
NOx & VOC	Enhanced PM reduction	Enhanced PM reduction	Enhanced PM reduction

Data Limitations

- Limited data on LVP-VOCs used in consumer products
- Intermediate and Semi-volatiles not included in inventories
 - VOCs from coatings/solvents/consumer products also may address additional uncertainty
- Some inventories are dated and rely on population and rule projections
- Smaller area source and consumer/institutional users do not normally report emissions
- Fugitive emissions and non-compliance difficult to estimate

Potential Approaches

- Sensitivity analysis to illustrate potential impacts
- Refine characterization of VOC sources
 - Product use surveys
 - Enhanced monitoring
- Temporal/Geographical
 - Utilize VOC/NOx ratios opportunities
- Seasonality
- Incentives
 - Permit streamlining
 - Reduced record keeping
 - Recognition/Green Business-like program

Potential Schedule/Next Steps

- Release of Draft Paper Aug 29, 2014
- Comments on Draft Paper Sep 26, 2014
- Additional Working Group Meeting As needed
- Final VOC White Paper Late 2014

Backup Slides

VOC Sources (2023)

	_
SOURCE CATEGORY	VOC (TPD)
Fuel Combustion	14
Waste Disposal	14
Cleaning and Surface Coatings	49
Petroleum Production and Marketing	36
Industrial Processes	16
Architectural	17
Others	2
Misc. Processes	16
RECLAIM Sources	0
Consumer Products	89
On-Road Vehicles	67
Off-Road Vehicles	86
Biogenic	75
TOTAL	481
= Degulated by SCAONAD	

Regulated by SCAQMD Regulated by CARB * Excludes LVP-VOC contribution Source: 2012 AQMP – 2023 Baseline (excluding biogenic)

NOx Sources (2023)

SOURCE CATEGORY	NOx (TPD)
Fuel Combustion	27
Waste Disposal	2
Others	0
Misc. Processes	17
RECLAIM Sources	27
On-Road Vehicles	125
Off-Road Vehicles	130
TOTAL	328

Regulated by SCAQMD	
Regulated by CARB	
Source: 2012 AQMP – 2023 Baseline	

PM Sources (Direct, 2023)

SOURCE CATEGORY	PM2.5 (TPD)
Fuel Combustion	6
Cleaning and Surface Coatings	2
Petroleum Production and Marketing	2
Industrial Processes	8
Solvent Evaporation	0
Misc. Processes	35
On-Road Vehicles	11
Off-Road Vehicles	7
TOTAL	71

Regulated by SCAQMD

Regulated by CARB

* Excludes Intermediate (C12-C23) and Semi-volatile (C24-C27) contribution Source: 2012 AQMP – 2023 Baseline