PERMIT STREAMLINING
TASK FORCE
SUBCOMMITTEE
MEETING
December 16, 2020
Agenda

- Pending Application Inventory
- Pending Permit Application Status Dashboard
- Online Tools Development
- Permit Processing Handbook
- Other Issues and Public Comment
Pending Application
Inventory Update
Pending Applications
(2016 – 2020)

Achieved and continue to maintained 50% reduction goal set in 2016
Pending Applications less PCs Issued

(2016 - 2020)

Ongoing Goal
Maintain pending applications without PC issued between 2,250 and 2,500
Inventory Management During COVID-19

- > 80% Engineering Staff Teleworking
- Increased electronic submittals
 - US Mail routing
 - More electronic payment options
- Closely monitoring incoming applications
- Stay at home impacts:
 - HQ not open to public
 - Field visits
 - Face to face meetings
COVID-19
Permit Application Trends
Emission Trends

NOx Emissions, RECLAIM Major Sources (tons)

As of October 30, 2020
Permit Activity

Number of Applications Received per Month

Preliminary data as of November 30, 2020
Permit Activity
(Cont.)

Equipment Applications Received
(Percent, by Assigned Fee Schedule)

2019 (Jan-Nov)
(2,929 Total)

2020 YTD (Jan-Nov*)
(2,135 Total)

*November 2020 numbers preliminary
Permit Activity
(Cont.)

Equipment Applications Received
(Percent, Small Business vs. Other)

2019 (Jan-Nov)
(2,929 Total)

Small Business 8%
Other 92%

2020 YTD (Jan-Nov*)
(2,135 Total)

Other 93%
Small Business 7%

*November 2020 numbers preliminary
Permit Activity (Cont.)

Equipment Applications Submitted
(Percent, New vs. Existing Facilities)

2019 (Jan-Nov) (2,929 Total)
- New Facilities: 21%
- Existing Facilities: 79%

2020 YTD (Jan-Nov*) (2,135 Total)
- New Facilities: 20%
- Existing Facilities: 80%

*November 2020 numbers preliminary
Permit Activity (Cont.)

Equipment Applications Received
(New / Modified / Change of Condition)

2019 (Jan-Nov)
(2,929 Total)
- New: 65%
- Modified: 28%
- Change of Condition: 7%

2020 YTD (Jan-Nov*)
(2,135 Total)
- New: 61%
- Modified: 33%
- Change of Condition: 6%

*November 2020 numbers preliminary
Pending Permit Application Status Dashboard Update
Pending Permit Application Status Dashboard

Governing Board initiative to increase transparency

- Online ability to view status of individual applications
- Integrate with existing F.I.N.D. application
Dashboard Status Indicators

- Two status indicator types:
 1. Time elapsed indicator
 2. Application status indicators

- Status progress bar:
Public Participation and Development

- Initial Internal Roll-Out Mid-2018
- Multiple Software Enhancements
- Data Verification
- Launched to Public May 2020

F.I.N.D. https://xappprod.aqmd.gov/find
Pending Permit Application Status Dashboard

Initial Case Study

October 2019

- Awaiting South Coast AQMD Action
- Awaiting Facility Action
- In Process

April 2020

- Awaiting South Coast AQMD Action
- Awaiting Facility Action
- In Process
Pending Permit Application Status Dashboard
November 2020 Snapshot

October 2019

- Awaiting South Coast AQMD Action
- Awaiting Facility Action
- In Process

November 2020

- Awaiting South Coast AQMD Action
- Awaiting Facility Action
- In Process
Initial Observations - Snapshot (October 2019, cont.)

<table>
<thead>
<tr>
<th>Completeness Determ. (Facility Action)</th>
<th>In Process</th>
<th>Awaiting Facility Action</th>
<th>Awaiting South Coast AQMD Action</th>
</tr>
</thead>
</table>
Pending Permit Application Status Dashboard
April 21, 2020 Snapshot

<table>
<thead>
<tr>
<th>Completeness Determination (Facility Action)</th>
<th>In Process</th>
<th>Awaiting Facility Action</th>
<th>Awaiting South Coast AQMD Action</th>
</tr>
</thead>
</table>
Pending Permit Application Status Dashboard
November 20, 2020 Snapshot

<table>
<thead>
<tr>
<th>Completeness Determinant (Facility Action)</th>
<th>In Process</th>
<th>Awaiting Facility Action</th>
<th>Awaiting South Coast AQMD Action</th>
</tr>
</thead>
</table>
Discussion / Improvement suggestions
Online Filing Update
Online Rule 222 Registration

- Three main registered equipment types
 - 222-A, Negative Air Machines (Asbestos)
 - 222-B, Boilers (1-2 mmbtu/hr)
 - 222-C, Commercial Charbroilers
- Represents ~ 80% of R222 Registrations
- Online Filing and Issuance

Average Annual Registrations (2016-19)

- Negative Air Machines, 576
- Boilers, 544
- Charbroilers, 209
- Others, 408

Legend:
- Negative Air Machines
- Boilers
- Charbroilers
- Others
Online Filing Activity

- Good utilization of Negative Air Machine module
- Extended outreach to asbestos contractors
- Other modules limited activity due to recent current events
- Planned additional outreach to dry cleaners
Development

- New software releases for data cleanup
- Incorporate public notice guideline
- Emergency IC Engine registration in review
- Workflow updates
 - “As is” process review complete
 - Lessons learned in expanded teleworking environment
Workflow
“As-Is” Process Flow

1. Pre-assessment includes permit utility location, CEQA requirements, engineer experience & workload, existing facility/application assignment of engineers.
Permit Processing Handbook Update
Updating Permit Processing Handbook

Goals:

- Update handbook to reflect current requirements and practices
- Ensure consistent evaluation of similar equipment and resultant permit requirements
- Primary purpose for internal use for training new staff and to promote efficient permit processing and best practices
- Provide public and permit applicants insights to data needs and permit evaluation criteria
A. Introduction
B. Permitting Authority
C. Permit Processing Overview
D. Permit Application Types and Completeness Considerations
E. Emissions Characterization
F. Regulatory Requirements- Overview
 a. Federal and State Requirements
 b. South Coast AQMD Rules
 c. Regulatory Considerations
 d. General Rules
 e. Source-Specific Rules (Reg XI)

G. Regulatory Requirements – Detailed Review
 a. Rule 212 Public Notice
 b. Reg XIII: New Source Review
 c. Reg XIV: Toxics and Other Non-Criteria Pollutants

H. Permit Writing Guiding Principles

I. Permit Evaluation Template

EMISSION SOURCE CHAPTERS
 Equipment and Process Categories
 Control Equipment
Commitment

- Overview sections
- Five equipment chapters:
 - Abrasive Blasting
 - Dry Cleaners
 - Emergency IC Engines
 - Gasoline Refueling
 - Spray Booths

Progress

- Overview sections
- Equipment chapters:
 - Unconfined Abrasive Blasting
 - Dry Cleaners
 - Gasoline Service Stations
 - Spray Enclosure – Fundamentals
 - Spray Enclosure – Special Cases
Sample chapters
(Gasoline Service Stations)

Table of Contents
1.1 General Description ... 1
1.2 Process and Control Equipment .. 2
 1.2.1 Equipment Description ... 6
1.3 Emission Factors ... 8
1.4 Calculations .. 9
 1.4.1 Operational Data .. 9
 1.4.2 Emissions Calculations .. 10
 1.4.3 Rule 1401 Calculations .. 10
1.5 Rules Evaluation ... 13
1.6 Policy Documents .. 16
1.7 Permit Operating Conditions .. 16
1.8 References ... 48
Sample Evaluation ... 49

List of Tables
Table 1-1. Gasoline Service Station Emission Factors 9
Table 1-2. Sample Emissions (Throughput = 300,000 gallons/month) 10

List of Figures
Figure 1-1. Phase I and Phase II Fuel Transfer 3
Figure 1-2. Phase II EVR and ORVR Control 5
Figure 1-3. Sample MICR Calculation (Throughput = 300,000 gallons/month) 11
Figure 1-4. Example MICR/TO Table in Cancer Burden Tool 12
Figure 1-5. Cancer Burden Tool ... 12
Figure 1-6. Cancer Burden Tool ... 13
Sample chapters
(Gasoline Service Stations, cont.)

EMISSION FACTORS:
The hydrocarbon and benzene emissions from storage tank filling and motor vehicles refueling operations are estimated by using appropriate emission factors summarized in the following table. These emission factors were developed by District’s Planning staff.

I. Emission Factors and Control Efficiencies
The following table summarizes the uncontrolled ROG emission factors in pounds per 1,000 gallons of gasoline throughput, benzene, ethylbenzene, and naphthalene content of gasoline and control efficiencies.

| Emission Factors and Control Efficiencies for Underground Tanks |
|------------------|----------------|------|-------------|-------------|
| | Loading | Breathing | Refueling | Hose Permeation | Spillage (a) |
| ROG (b) |
Uncontrolled ROG Emission Factors (lbs/1000 gallons)	7.70	0.76	8.4	0.009	0.24 (a)
Control Efficiency	98%	98.8%	98.2%	0%	0%
Controlled ROG Emission Factors (lbs/1000 gallons)	0.15	0.624	0.32	0.009	0.24

| Toxic Air Contaminants (TACs), weight % (c) |
|---|---|---|---|---|---|
| Benzene Emission Factors (lbs/1000 gallons) | 0.456% | 0.456% | 0.456% | 0.456% | 0.707% |
| Ethylbenzene Emission Factors (lbs/1000 gallons) | 0.107% | 0.107% | 0.107% | 0.107% | 1.29% |

PROCESS_DESCRIPTION:
The gasoline storage and dispensing facility is used to store and dispense three different grades of gasoline. This facility is equipped with CARB certified Phase I and Phase II vapor controls, which complies with Rule 461. Furthermore, these vapor controls are considered to be T-BACT, which complies with Rule 1401. Finally, the project will not result in a net emission increase and thus will comply with Reg. XIII.

EMISSION FACTORS:
The hydrocarbon and benzene emissions from storage tank filling and motor vehicle refueling operations are estimated by using appropriate emission factors summarized in the following table. These emission factors were developed by District’s Planning staff.

I. Emission Factors and Control Efficiencies
The following table summarizes the uncontrolled ROG emission factors in pounds per 1,000 gallons of gasoline throughput, benzene, ethylbenzene, and naphthalene content of gasoline and control efficiencies.

| Emission Factors and Control Efficiencies for Underground Tanks |
|------------------|----------------|------|-------------|-------------|
| | Loading | Breathing | Refueling | Hose Permeation | Spillage (a) |
| ROG (b) |
Uncontrolled ROG Emission Factors (lbs/1000 gallons)	7.70	0.76	8.4	0.009	0.24 (a)
Control Efficiency	98%	98.8%	98.2%	0%	0%
Controlled ROG Emission Factors (lbs/1000 gallons)	0.15	0.024	0.32	0.009	0.24

| Toxic Air Contaminants (TACs), weight % (c) |
|---|---|---|---|---|---|
| Benzene Emission Factors (lbs/1000 gallons) | 0.000693 | 0.0000109 | 0.000146 | 0.000041 | 0.0017 |
| Ethylbenzene Emission Factors (lbs/1000 gallons) | 0.000161 | 0.0000257 | 0.000342 | 0.0000983 | 0.0031 |
Sample chapters
(Spray Booth, Fundamentals)
Sample chapters
(Spray Booth, Fundamentals, cont.)

Spray Booth Design Considerations

Exhaust Airflow

There are three ways that air is exhausted from a spray enclosure: (1) vented to the outside atmosphere, (2) vented to a non-integral control device, or (3) vented back into the building. The direction of the exhaust air is important because it will affect deposition of the exhaust constituents and, therefore, how the health risk from toxic materials is calculated.

J(E) 6.1.1 Stack Height

Stack height is measured from the ground elevation to the top of the stack. If the stack is above a roof, the discharge point must be at least 5 feet above the roof surface. If the stack is below a roof, it is permissible to assume stack height = building height.
Next Steps

Early 2021

- Confined Abrasive Blasting
- Dry Particulate Controls
- Crematories
- Emergency IC Engines

Additional Chapters

- Boilers, SCRs
- Petroleum Storage Tanks
- Asphalt, Concrete Batch Plants
- Lead Melting
- IC Engines
- Printing Operations
- RTOs, Refinery Flares, Bulk Loading/Unloading
- Carbon Adsorbers
Feedback

- Volunteers to review and provide feedback on:
 - Gasoline dispensing facilities
 - Spray booth
- Type of feedback
 - Level of detail
 - Format / readability
 - Clarification points
 - Additional supporting references / citations
Other Business
Public Comment