Low Carbon Resources

Implementing biogas, hydrogen and technologies for distributed generation and transportation

ENERGY OUTLOOK WHITE PAPER WORKING GROUP MEETING

Ron Kent
Technology Development Manager
April 15, 2015

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765

Biogas Upgrading

Operations - October 2012

- » Run Time: 132 hr
- » Ave Feed Flow:177 scfm
- » Ave Product Flow: 101 scfm
- » Ave Product Quality: 99.0% methane
- » Ave Methane Recovery: 89%
- » Ave Product H2S: 0.4 ppm (Rule 30 limit is <4.0 ppm)</p>

Waste to Energy

Project Description

Design, install, and operate an innovative, small-scale wasteto-energy bioenergy system that:

- » Integrates Concentrated Solar Power (CSP) and Hydrothermal Processing (HTP)
- » Convert dairy manure into low-carbon, high-quality renewable natural gas (RNG) for injection into the pipeline

Efficient, Small Footprint Approach

- Extracts up to 80 percent of the energy in the dairy manure
- » Solar steam generator provides 30,000 therms of energy in a year—enough to offset more than 20,000 gallons of diesel fuel oil—in a total footprint of only one acre. Greatly reduced footprint in comparison to less efficient systems such as anaerobic digesters
- » Minimal onsite storage because the RNG can be injected immediately NG pipelines

Collaboration Partners

- » CEC
- » Genifuels Corp. (Hydrothermal Processing System)
- » Hyperlight Energy (Solar Thermal System)
- » Energy Solutions (Techno-Economic Analysis)

National Renewable Energy Laboratory (Solar Thermal Solar California Gas Company A Sempra Energy utility®

Skid-mounted HTP system

Hyperlight Solar Thermal System

Glad to be of service.8

Thermal Energy Storage

Purpose

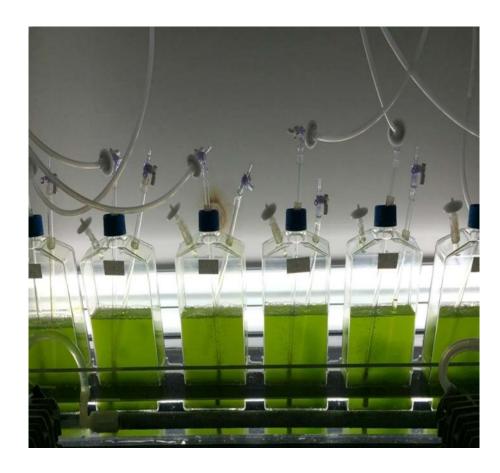
- Develop and demonstrate an innovative, low-cost thermal energy storage system (TES) meets DOE cost goals and California Energy Commission renewable energy targets.
- Demonstrate the TES technology at SDSU Brawley in connection with a natural gas/solar thermal adsorption chilling system and potentially a fuel cell CHP system.

Deliverables

- » Functional elemental sulfur thermal system for testing
- » Computer code
- » System operations report

Thermal Storage for NG CHP and Solar Heating Systems

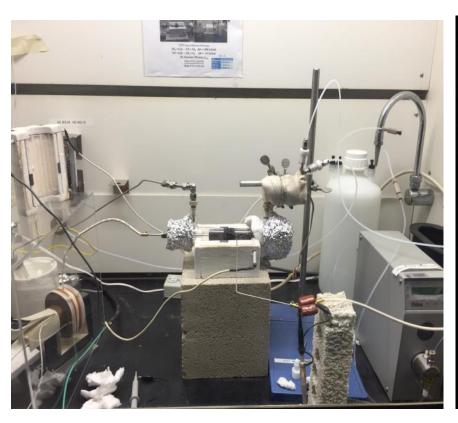
Collaboration Partners	UCLA/CEC/DOE ARPAe	
Location	UCLA/SDSU Brawley	
Duration	36 Months	
Start Date	Jan-15	
Planned End Date	Dec-18	
CEC Budget	\$1.5 Million + \$300k SCG	
DOE ARPAe Budget	\$625k + \$125k SCG	


Algae Flue Gas Clean-up

Purpose

» Assess the efficacy of using algae to capture and recycle flue gas from natural gas engines and other prime movers.

Deliverables


- » Functional lab-scale system
- » Test data
- » Design and FEED study for a commercial pilot system

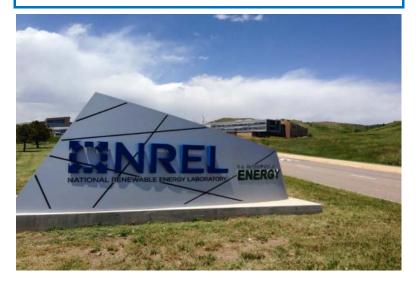
Distributed H2

Solar-Thermal Catalytic H2 Generation

- » Low-cost hydrogen from
- » Methane, water and solar energy
- » 20% 30% renewable H2

Power to Gas - NREL

Objective:


- Enable higher penetrations of solar power generation using the natural gas pipeline system for energy storage.
- This project has two primary elements
 - Electrolyzer / methanation hardware characterization and testing in a full-up gridsimulation environment
 - Modeling of P2G economics based on value provided to the grid in various operating scenarios

Deliverables

- Design, build, install, test and demonstrate systems for:
 - Electrolysis
 - Methanation
- Measure and model system performance and provide modeling and test reports
- Assessment of cost/benefit or the system as a grid resource

P2G Solar Energy Storage RD&D

Collaboration Partners	NREL/SoCalGas
Location	Golden, CO
Duration	18 Months
Start Date	Sept 2014
Palnned End Date	March 2016
Budget	\$900,000
Co-funding	50/50

Power-to-Gas - NFCRC/UCI

Electrolyzer Size

Budget - Hydrogen Only

Purpose

- Develop a deep understanding of the physical, chemical and energy dynamic attributes of H2 blending necessary to achieve commercial P2G deployments for storage and distribution of excess wind and solar energy.
 - This is a logical next step from SoCalGas' CRADA with NREL that focuses on P2G grid integration

Deliverables

- » Design, build, install and test systems for:
 - PV and electrolysis integration
 - H2 blending and pipeline injection
- » Determine impacts of H2 injection on natural system gas components

Collaboration Partners Location Duration Start Date Planned End Date UCI/SoCalGas UCI - NFCRC 18 Months Dec-14 Jun-16

60kW

\$2.5 Million

P2G Solar Energy Storage & Distribution RD&D

Phase II* TBD

^{*}Pending CEC and/or DOE support, an anaerobic digester and a methanation unit will be added in Phase 2.

Oxy-fuel Zero Emissions Power

Purpose

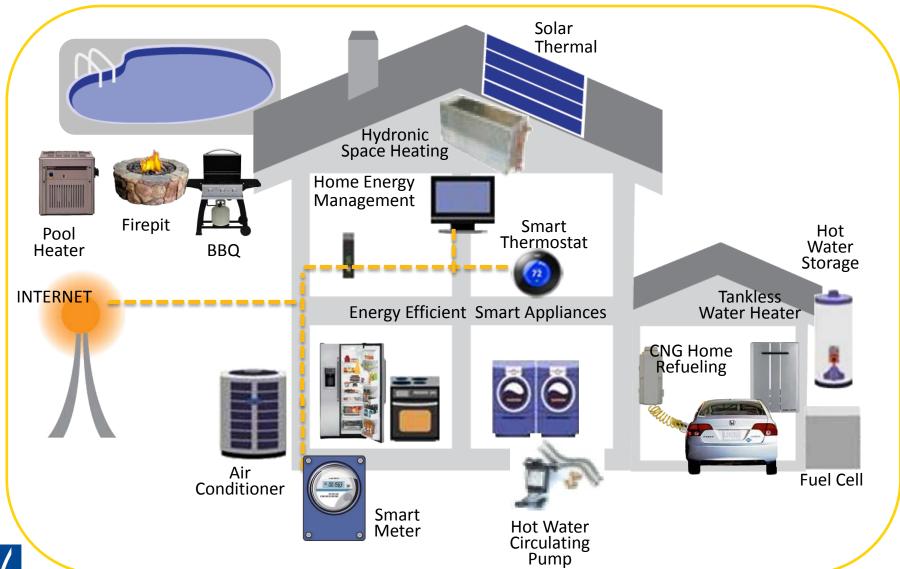
 Develop cost-competitive zero emissions power using advanced oxy-fuel combustion technology. Developed by Clean Energy Systems (CES)

Deliverables

- » Technology demonstrations
- » Operational power plant
- » CO2 sales to EOR operations in California

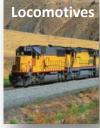
Clean Energy Systems Zero Emissions Oxy-fuel Power Plants

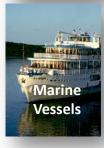
Collaboration Partners	Paxton, DOE, CEC,	
Location	Sacramento, Bakersfield	
Duration	Multi-year	
Start Date	January 2006	
Planned End Date	December 2016	
	_	



Projected Smart ZNE Home

Alternative Fuel HD Vehicles





RENEWABLE NATURAL

BLENDS, ETC.

Alternative Fuel MD/LD Vehicles

