

EPA's Efforts on Discovery, Evaluation, and Application of Emerging Air Sensor Technologies

Andrea Clements Gayle Hagler and Ron Williams

Making Sense of Sensors Conference September 28, 2017

Sensors and Communities

Ultimately, air sensor technology has promise to reduce pollution exposure and improve public health through

EPA

- Improved knowledge on exposure to air pollution at a community and individual level
- Identification and investigation of emission sources within a community
- More extensive data supporting public health communication – e.g., sensors for Air Resource Advisors during wildland fires

Star Tribune, June 25, 2016 MINNEAPOLIS Bicyclists strap on monitors to measure Twin Cities air quality

EPA/ORD Approach

EPA/ORD activities involve

- Air sensor market research and technology evaluation
- Development and application of custom sensor systems for specific research studies
- Development of sensor data analytics, visualization, and real-time quality assurance measures
- Outreach and training

Air Sensor Toolbox: https://www.epa.gov/airsensor-toolbox

This website provides information for citizen scientists and others on how to select and use low-cost, portable air sensor technology and understand results from monitoring activities. The information can help the public learn more about air quality in their communities.

Custom Sensor Systems

Mobile sensors

Development and application of custom sensor systems

Village Green Project

Set EPA

Most common measures: $PM_{2.5}$ Ozone NO_2 VOCs Black carbon Drop-in-place sensor pods

Aerial systems

Wildland Fire Sensors Challenge

Fenceline monitoring

Village Green Project

Community-based research project designed to

- Demonstrate the capabilities of new realtime monitoring technology
- Provide first real-time streaming of air quality data by EPA
- Help residents and citizen scientists learn about local air quality

Key Features:

- Mid-cost pollutant sensors (PM, ozone, etc.)
- Meteorological sensors (temp, RH, WS, WD)
- Power supply (solar panels & battery)
- Microprocessor and cellular modem

Ongoing Work:

 Full design, operational specifications, and access to historical data - expected in 2018

Village Green Partners

City of Philadelphia and National Park Service

State of Oklahoma and Myriad Botanical Gardens

State of Kansas, Wyandotte County, and School District

District Department of the Environment and Smithsonian

Village Green Data & Messaging

nlore the data

The data website allows users to

- Access real-time pollutant data in their community
- Explore historical data to understand the variability in pollutant concentrations
- Access the healthbased Air Quality Index for their area
- Better understand the pollutant concentration based on the sensor scale categorization

Real-time data and interactive exploration available online at: <u>airnow.gov/villagegreen</u>

More information on the sensor scale categories and the development process is available at: www.epa.gov/air-sensortoolbox/what-do-mysensor-readings-meansensor-scale-pilot-project

AirMapper

The AirMapper collects real-time data about pollutants and the environment:

- Portable, small, and lightweight allowing it to be carried to mounted to a bicycle
- Allows citizen scientists and students to explore the community and learn about factors that influence air quality

Key Features:

- Low-cost pollutant sensors (PM, CO₂)
- Other environmental sensors (temp, RH, noise)
- Accelerometer and GPS
- Rechargeable battery power
- On-board data storage
- Touchscreen interface

Citizen Science Air Monitor

The CSAM is an evolving portable monitor collecting real-time data about pollutants and the environment:

- Numerous community applications through the country
- Allows citizen scientists to establish a small network of monitors to investigate community air quality issues

Key Features:

SEPA

- Low-cost pollutant sensors
- Meteorological sensors (temp, RH, etc.)
- On-board data storage + cellular modem
- Power options including solar
- Portable and easy to use

Data Interpretation Tools

Development of a variety of tools to help users understand the quality of their sensor data and to visualize the results

RFTIGO

PM2.5(ug/m3) data range

Sensor Evaluation and Collocation Instruction Guide

Collocation Guide

Instructional guide for conducting a successful collocation evaluation of air sensors with regulatory grade instruments:

- Provided as a PowerPoint presentation for easy reading for a wide audience with visuals, examples, and links
- Helps users evaluate collocation data and to interpret the quality of the measurements for communication to others
- Public release to the Air Sensors
 Toolbox expected late 2017

Topics Covered:

- Low-cost sensors vs reference
- Introduction to collocation
- Planning collocation
- Making measurements
- Data recovery and review
- Data comparison
- Using sensors

SEPA

How to Evaluate Low-Cost Sensors by Collocation with Federal Reference Method Monitors

> National Exposure Research Laboratory Office of Research and Development

Macro Analysis Tool

Easy-to-use spreadsheet-based macro tool for performing data comparisons and interpreting the results:

- Tackles a big hurdle for citizenled community air monitoring projects – working with the data
- Public release to the Air Sensors
 Toolbox expected late 2017

The tool will

SEPA

- Time match the sensor and reference data
- Average data into longer averaging times
- Plot a time series of selected data
- Plot sensor versus reference data and develop a regression equation

RETIGO

Real Time Geospatial Data Viewer (RETIGO) is a free, web-based tool that can be used to explore stationary or mobile environmental data:

- Adds data from nearby air quality and meteorological stations
- Added functionality in Version 3 expected early 2018

Acknowledgements

Contacts:

- Air Sensors Toolbox: <u>www.epa.gov/air-sensor-toolbox</u>
- Sensor Evaluation Ron Williams, Andrea Clements, Teri Conner
- Village Green Project Ron Williams, Sue Kimbrough
- Sensor Messaging Kristen Benedict
- AirMapper Sue Kimbrough, Ron Williams, Gayle Hagler
- CSAM Ron Williams
- Collocation Guide and Macro Analysis Tool Teri Conner, Andrea Clements, Amanda Kaufman, Ron Williams
- RETIGO Gayle Hagler, Heidi Paulsen