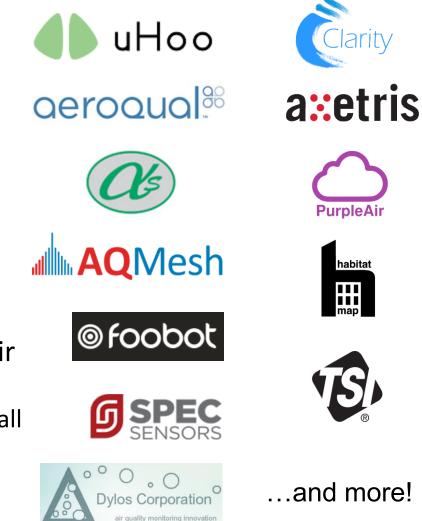


"Making Sense of Sensors" Conference Diamond Bar; September 27, 2017


Evaluation of "Low-cost" Sensors for Measuring Gaseous and Particle Air Pollutants: Results from Three Years of Field and Laboratory Testing

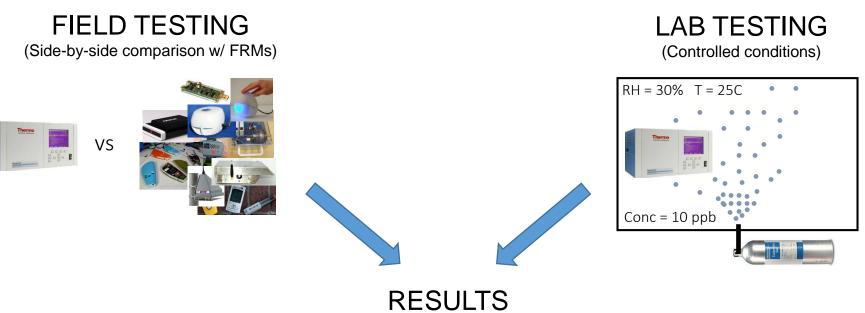
Andrea Polidori, Ph.D. Atmospheric Measurements Manager South Coast Air Quality Management District Diamond Bar, CA

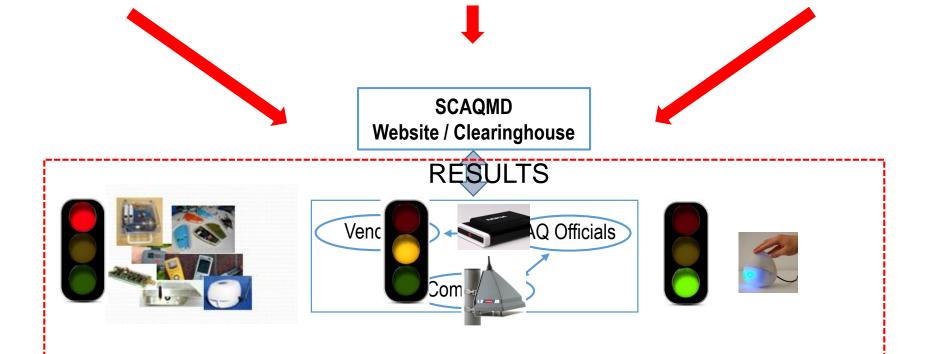
Low-Cost Air Quality Sensors

- Rapidly proliferating
- Tremendous potential
 Low-cost
 Ease of use
- Multiple potential applications

 Spatial/Temporal air quality info
 Fence-line applications
 Community monitoring
 - Need to systematically evaluate their performance
 - Accuracy, precision, durability and overall reliability
 - $_{\odot}$ Calibration and drift
 - \circ Other performance issues

- Established in July 2014
- Over \$600,000 investment
- Main Goals & Objectives Provide guidance & clarity Promote successful evolution and use of sensor technology Minimize confusion
- Sensor Selection Criteria Commercially available
 - Optical
 - Electrochemical
 - Metal oxide
 - Real- or near-real time
 - Criteria pollutants & air toxics




(Categorize sensors based on performance)

Field Testing

Started in September, 2014 • Over 30 sensors evaluated

Process

Sensor tested in triplicates
Two month deployment
< ~ \$2,000: purchase
> ~ \$2,000: lease or borrow

Location

o Rubidoux station (main)

- Inland site
- Fully instrumented

Aerosol Test

Laboratory Testing

Gas Test

Laboratory Testing (cont.)

T and RH controlled: T (0-50 °C); RH (5-95%)

Particle testing

- Particle generation systems
- Particle monitors: mass concentration and size distribution

Gas testing

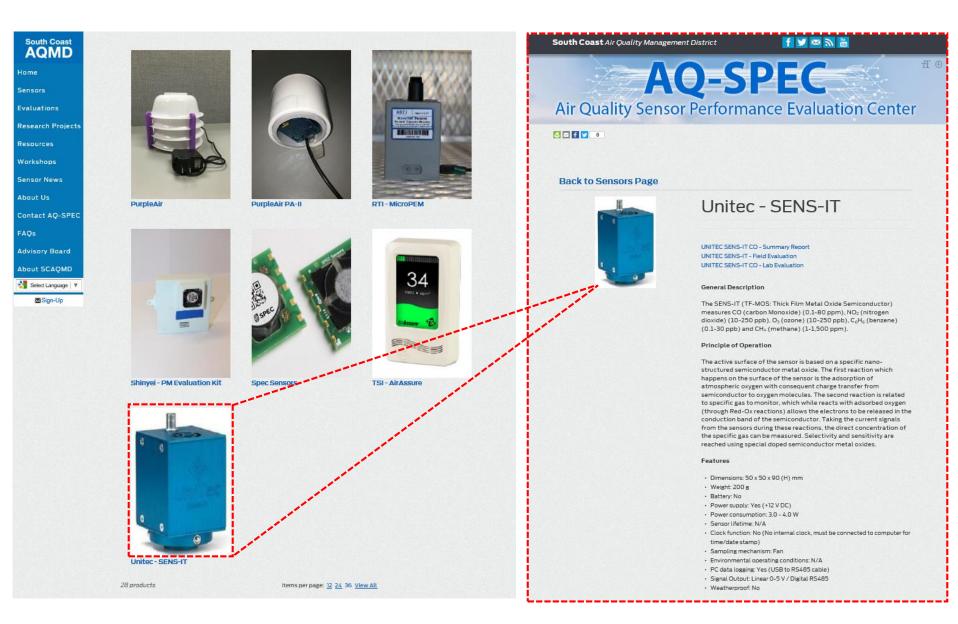
- Gas generation / dilution system
- Gas monitors: CO, NO_X, O₃, SO₂, H₂S, CH₄/NMHC

www.aqmd.gov/aq-spec

Background

In an effort to inform the general public about the actual performance of commercially available "low-cost" air quality sensors, the SCAQMD has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC) program. The AQ-SPEC program aims at performing a thorough characterization of currently available "low-cost" sensors under ambient (field) and controlled (laboratory) conditions.

Main Goals & Objectives


- Evaluate the performance of commercially available "low-cost" air quality sensors in both field and laboratory settings
- · Provide guidance and clarity for ever-evolving sensor technology and data interpretation
- Catalyze the successful evolution, development, and use of sensor technology

Sensor Selection Criteria

- The sensor shall have potential for near-term use.
- The sensor shall provide real- or near-real time measurements.
- The sensor shall measure one or more of the National Ambient Air Quality Standards (NAAQS) criteria pollutants, air toxics, pollutants of concern and non- air toxics. Examples of the targeted gases and particles are carbon monoxide (CO), ozone (O₃), nitrogen oxides (NO₃), particulate matter (PM), volatile organic compounds (VOCs), hydrogen sulfide (H₂S) and methane (CH₄).
- · The market cost of the sensor shall be less than \$2,000.
- Turnkey products will be tested first.

Why did SCAQMD create the AQ-SPEC Program?

www.aqmd.gov/aq-spec

PM Sensors										
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R²	Summary Report			
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	$R^2 \sim 0.79$ to 0.94					
	Air Quality Egg (Version 1)	Optical	PM	~\$200	$R^2 \sim 0.0$					
	Air Quality Egg (Version 2)	Optical	PM	~\$240	$\begin{array}{l} PM_{2.5} : \ R^2 \sim \ 0.79 \ to \ 0.85 \\ PM_{10} : \ R^2 \sim \ 0.31 \ to \ 0.40 \end{array}$					
-	Alphasense (OPC-N2)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$450	$\begin{array}{l} PM_{1.0} \colon R^2 \sim 0.63 \text{ to } 0.82 \\ PM_{2.5} \colon R^2 \sim 0.38 \text{ to } 0.80 \\ PM_{10} \colon R^2 \sim 0.41 \text{ to } 0.60 \end{array}$	R ² ~ 0.99	PDF (1,291 KB)			
	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	$R^2 \sim 0.65$ to 0.85	$R^2 \sim 0.89$	PDF (1,384 KB)			
	Foobot	Optical	PM2.5	~\$200	$R^2 \sim 0.55$					
	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.65$ to 0.70	$R^2 \sim 0.87$	PDF (1,144 KB)			
Z	Hanvon (Hanvon N1)	Optical	PM2.5	~\$200	$R^2 \sim 0.52$ to 0.79					
	MetOne (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	$R^2 \sim 0.53$ to 0.67					
0	Moji China (Aimut)	Optical	PM2.5	~\$150	$R^2 \sim 0.81$ to 0.88					
	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$\begin{array}{l} PM_{1.0}; \; R^2 \sim 0.1 \\ PM_{2.5}; \; R^2 \sim 0.2 \end{array}$					
2	Origins (Laser Egg)	Optical	PM2.5 & PM10	~\$200	$\begin{array}{l} \text{PM}_{2.5}\text{:}\ \text{R}^2 \sim 0.58 \\ \text{PM}_{10}\text{:}\ \text{R}^2 \sim 0.0 \end{array}$					
<u> </u>	Perkin Elmer (ELM)	Optical	PM	~\$5,200	$R^2 \sim 0.0$					
	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} \text{PM}_{1.0}; \ \text{R}^2 \sim 0.93 \ \text{to} \ 0.95 \\ \text{PM}_{2.5}; \ \text{R}^2 \sim 0.77 \ \text{to} \ 0.92 \\ \text{PM}_{10}; \ \text{R}^2 \sim 0.32 \ \text{to} \ 0.44 \end{array}$	$\begin{array}{c} \text{PM}_{1.0};\\ \text{R}^2 \sim 0.95\\ \text{PM}_{2.5};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{10};\\ \text{R}^2 \sim 0.97 \end{array}$	PDF (1,072 KB)			
P	PurpleAir (PA-II)	Optical	PM1.0, PM2.5 & PM10	~\$200	$\begin{array}{l} \mbox{PM}_{1.0}; \ \mbox{R}^2 \sim 0.96 \ \mbox{to} \ 0.98 \\ \mbox{PM}_{2.5}; \ \mbox{R}^2 \sim 0.93 \ \mbox{to} \ 0.97 \\ \mbox{PM}_{10}; \ \mbox{R}^2 \sim 0.66 \ \mbox{to} \ 0.70 \end{array}$	$\begin{array}{c} \text{PM}_{1.0};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{2.5};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{10};\\ \text{R}^2 \sim 0.95 \end{array}$	PDF (1,328 KB)			
	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	R ² ~ 0.99	PDF (1,087 KB)			
	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	R ² ~ 0.93	PDF (1,156 KB)			
	Speck	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.32$					
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$					

Results

Most PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Strong correlation (R²) with EPA "approved" instruments (e.g., FEM)

<u>However...</u>

- Sensor "calibration" is needed in most cases
- Very small particles (e.g. < 0.5 μm) are not detected
- Bias in algorithms used to convert particle counts to particle mass

Gaseous Sensors

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R ²	Summary Report
-1	2B Technologies (POM)	UV absorption (FEM Method)	O ₃	~\$4,500	$R^{2} \sim 1.00$	R ² ~ 0.99	PDF (1,295 KB)
٦	Aeroqual (S-500)	Metal Oxide	O ₃	~\$500	$R^2 \sim 0.85$	$R^2 \sim 0.99$	PDF (1,197 KB)
0	Air Quality Egg (Version 1)	Metal Oxide	CO, NO ₂ & O ₃	~\$200	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.40$ O ₃ : $R^2 \sim 0.85$		
	Air Quality Egg (Version 2)	Electrochem	CO & NO ₂	~\$240	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Electrochem	O3 & SO2	~\$240	O_3 : $R^2 \sim 0.0$ to 0.20 SO_2 : R^2 n/a		
	AQMesh (v.4.0) (Discontinued)	Electrochem	CO, NO, NO ₂ & O ₃	~\$10,000	CO: $R^2 \sim 0.42 \text{ to } 0.80$ NO: $R^2 \sim 0.0 \text{ to } 0.44$ NO ₂ : $R^2 \sim 0.0 \text{ to } 0.46$ O ₃ : $R^2 \sim 0.46 \text{ to}$ 0.83		
	Perkin Elmer (ELM)	Metal Oxide	NO, NO ₂ & O ₃	~\$5,200	NO: $R^2 n/a$ NO ₂ : $R^2 \sim 0.0$ O ₃ : $R^2 \sim 0.89$ to 0.96		
	Smart Citizen Kit	Metal Oxide	CO, NO ₂	~\$200	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.50 \text{ to } 0.85 \\ \text{NO}_2\text{: } \text{R}^2 \sim 0.0 \end{array}$		
24	Spec Sensors	Electrochem	CO, NO ₂ & O ₃	~\$500	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.84 \text{ to } 0.90 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.16 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.24 \end{array}$		
Ü	UNITEC (SENS-IT)	Metal Oxide	CO, NO ₂ & O ₃	~\$2,200	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.33 \text{ to } 0.43 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.60 \text{ to } 0.65 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.72 \text{ to} \\ 0.83 \end{array}$	CO: $R^2 \sim 0.99$ O3: $R^2 \sim 0.82$ to 0.90	CO: PDF (1,283 KB) O3: PDF (1,177 KB)

Results

Most gaseous sensors showed:

- Acceptable data recovery
- Wide intra-model variability range
- CO; NO; O₃ (when measured alone): good correlation with FRMs
- O₃ + NO₂: low correlation with FRM (potential O₃/NO₂ interference)
- SO₂; H₂S; VOC: difficult to measure with available sensors

AQ-SPEC - What's Next? Sensor Certification Program?

- Which pollutant(s) / sensor type(s)?
 - Are PM (e.g., particle counters) and Ozone (e.g., electrochemical) sensors good candidates?

"Certified" for which use?

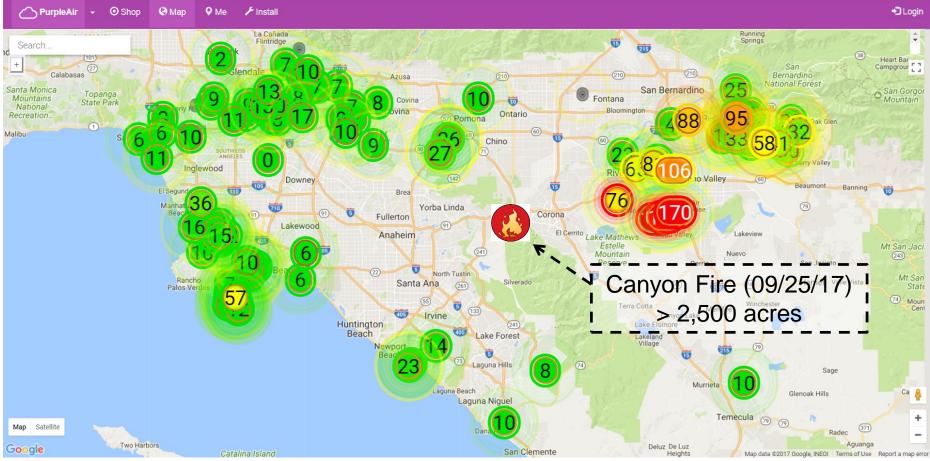
- Regulatory?
- Fenceline?
- o Improve network design?
- Permitting?
- Other?

Very expensive to implement correctly

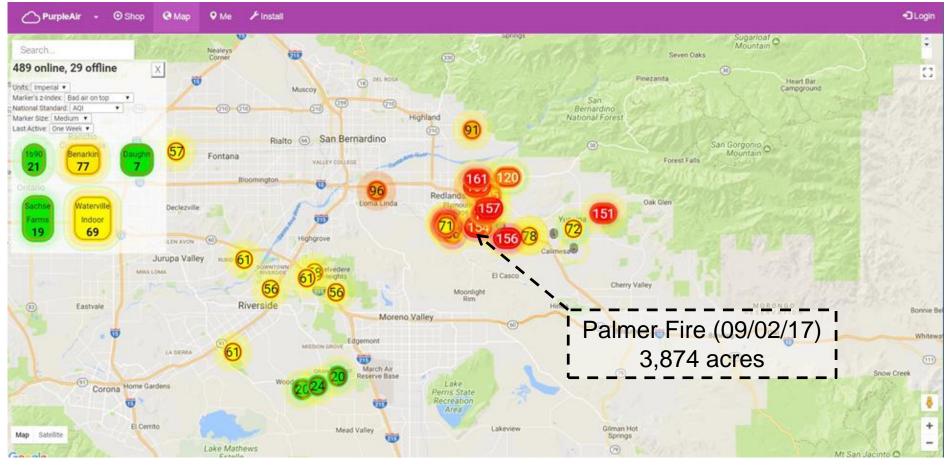
- Multiple field testing locations across the Nation
- Multiple laboratory testing facilities
- Extended testing time

for what?

AQ-SPEC – Current Activities PM Sensor Network



PurpleAir PM sensor network (US only)


- Over 60 "low-cost" PM sensors deployed by AQ-SPEC in SoCal
- Real-time PM₁, PM_{2.5} and PM₁₀ monitoring
- Wireless network / remote server
 - Sensor device/data management: Microsoft Azure IoT + Power Bi
- Project goals
 - Test sensor durability
 - Show ability to scale up
 - Help improve accuracy of satellite data
 - Study spatial/temporal PM variability
 - Provide monitoring during wildfires

AQ-SPEC – Current Activities PM Sensor Network (Wildfire Event)

Note: Values are reported as AQI units

AQ-SPEC – Current Activities PM Sensor Network (Wildfire Event)

Note: Values are reported as AQI units

AQ-SPEC – Current Activities

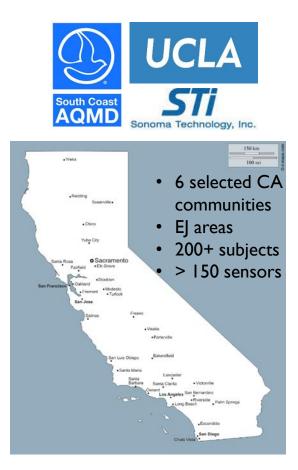
U.S. EPA Science To Achieve Results (STAR) project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

- Provide communities with the knowledge necessary to select, use and maintain low-cost sensors and to correctly interpret the collected data
- Three year study:
 - SCAQMD (PI)
 - University of California Los Angeles (UCLA; Co-PI)
 - Sonoma Technology Inc. (STI; Co-PI)
 - o BAAQMD
 - Santa Barbara County APCD
 - Other CAPCOA agencies
 - Community Groups
 - Leisure World (Seal Beach, CA)
 - o Weather Underground
 - University of Auckland (New Zealand)

AQ-SPEC – Current Activities

U.S. EPA Science To Achieve Results (STAR) project

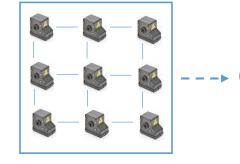

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

Four specific aims:

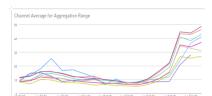
- 1. Develop educational material for communities
- 2. Evaluate / identify candidate sensors for deployment
- 3. Deploy selected sensors in California communities
- 4. Communicate the lessons learned to the public

> On-going:

- Wide Spread Sensor Deployment across California
 - 430 PM sensors
 - 100 Aeroqual nodes (i.e., PM, O₃, NOx)
- Cloud Based Platform Development
 - Data ingestion and storage
 - Data visualization and mapping
 - Data dissemination

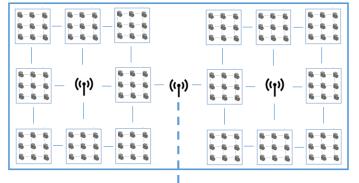

Low-cost Sensors / High-cost Networks

Single user (e.g. 1 sensor)


- o Cost: \$
 - Hardware
 - Minimal maintenance

Small sensor network (e.g. 9 sensors)

- Cost: \$\$
 - Hardware
 - Maintenance & calibration
 - Sensor connectivity
 - Data logging and management
 - Data validation and analysis
 - Visualization and reporting



Large sensor network (e.g. > 100 sensors)

• Cost: \$\$\$\$

- Hardware
- Maintenance & calibration
- Sensor connectivity
- Data logging and management
- Data validation and analysis
- Visualization and reporting

Thanks!

The AQ-SPEC Team

- Dr. Andrea Polidori
- Dr. Vasileios Papapostolou
- Brandon Feenstra
- Dr. Hang Zhang
- Berj Der Boghossian
- Dr. Olga Pikelnaya