Air quality sensor networks near pollution hotspots: Measuring volcanic SO₂ levels on the Island of Hawai'i

Jesse Kroll 27 September 2017

Introduction: Air quality in Hawai'i

area 10,400 km² pop. 187,000

Kīlauea Volcano:

Largest point source of SO_2 in the U.S. (~1 Tg/yr)

SO₂, PM_{2.5} (volcanic smog, or "vog") represent a local nuisance and health concern

AQ monitoring stations run by DOH, NPS, USGS

Spatial, temporal variability

data from Hawaii Dept. of Health Air Quality stations

Planned network (fall 2018)

Primary objectives:

- (1) characterize AQ sensors in these idealized conditions
- (2) providing the population with highly localized AQ data

~40 sensor nodes for measuring SO₂, PM_{2.5}, and meteorological parameters

primarily located at schools (green pins), local health clinics (blue diamonds)

Proof-of-concept network

Deployed Jan 2017

SO₂ (Alphasense B4), RH/T

Solar-powered, 3G enabled (total components: ~\$400)

Calibration: co-location with DOH monitors [Hagan et al, *AMTD* 2017]

Calibration

no sign of sensor/sensitivity decay, or baseline drift

missing data (+ poorer accuracy): failing RH/T sensor

SO₂ measurements (~2 km from crater)

SO₂ measurements (~2 km from crater)

The Island of Hawai'i represents a unique testbed for low-cost AQ sensors (one gas-phase pollutant; extreme variability in levels)

Calibration by co-location with regulatory-grade monitors is promising, but introduces challenges when moving to new locations

AQ sensor nodes after 8 months of continuous operation:

- no major problems associated with power, communication
- no evidence of AQ sensor drift
- long-term viability limited by the RH/T sensor

Schools as "hosts" for sensor nodes

Acknowledgements/collaborators

MIT CEE: David Hagan, Jon Franklin, Gabriel Isaacman-VanWertz, Colette Heald

MIT CEHS: Kathy Vandiver

TKC: Betsy Cole, Donna Mitts, Nancy Redfeather

Hawaii Dept. of Health: Lisa Wallace

Teachers/Principals: Wendy Baker, Kalima Cayir, Ben Duke, Steve Hirakami, Darlene Javar, Chris King-Gates, Cindy Watarida

EPA's Science to Achieve Results (STAR) program

MIT's Tata Center for Technology and Design

Extra slides

Sensor node

Sample data

Extrapolation

Changing locations

Sensor drift

Low concentrations

