

39th AAAR Annual Conference

A Comprehensive Test Standard for Indoor Air Quality Low-Cost PM_{2.5} Sensors: ASTM D8405-21

Wilton Mui, Air Quality Specialist
Michelle Kuang, Air Quality Specialist
Sahil Bhandari, Postdoctoral Research Fellow
Vasileios Papapostolou, AQ-SPEC Supervisor
Andrea Polidori, Advanced Monitoring Technologies Manager

Indoor Air and PM_{2.5}

- Only ambient PM_{2.5} air quality standards exist
- Many sources of PM_{2.5} in indoor and occupational environments
 - Cooking
 - Smoking
 - Incense/candle burning
 - Dust resuspension
 - Machining/sanding/welding/spray-painting
- We spend ~90% of our time indoors

Low-Cost PM_{2.5} Sensors

- Well-suited for indoor and consumer applications
 - Low cost (~\$100-1,000 USD range)
 - Low power
 - Low noise
 - Optical scattering measurement; high time resolution
 - Compact form factor
 - Range of aesthetic choices and interfaces
 - Some are smart-home integrable
- Can provide feedback for indoor space ventilation or filtration actions
- Data quality can be a challenge

- History of laboratory chamber test protocols used for $PM_{2.5}$ sensor performance
 - Only discussing protocols carried out by testing entities, not one-time protocols in academic/research studies
 - 2016 South Coast AQMD AQ-SPEC laboratory evaluation protocol
 - 2017 UK Environment Agency Monitoring Certification Scheme (MCERTS)
 - 2018 RESET® Certification
 - 2021 US EPA PM_{2.5} sensor performance testing protocol
 - 2021 ASTM D8405-21 Standard Test Method for PM_{2.5} Sensors or Sensor Units Used in Indoor Air Applications (less than 1 month old!)

Scope of Test Method

- PM_{2.5} sensors and sensor systems
- Indoor applications
- Continuously powered
- Data history logged or retrievable
- Non-regulatory, security, law enforcement, or forensic purposes

Limitations

- Particle composition effects
 - Indoor particle types diverse
 - A single inorganic salt type
 - A single organic polymeric type
- Optical scattering technique and ~0.3 μm diameter limit
 - Some reference monitors
 - Nearly all low-cost PM_{2.5} sensors

Chamber and Supporting Test Equipment

- Large enough so that triplicate sensor crosssectional areas do not exceed 15% of any chamber face area
- Stainless steel, airtight
- Temperature control 20-50°C
- RH control 40-80%
- Moisture and particle-free air (ISO 8573-1 class 2.4.1 air, HEPA-filtered)
- Well-mixed, homogeneous

PM_{2.5} Reference Monitor and PM Generators and Materials

- Reference monitor
 - EPA Class III FEM for PM_{2.5}
 - Must also report PM₁₀
 - 1-minute or faster reporting interval
 - Report particle size distributions; supplementary monitor permitted for this purpose
- Particle generator(s)
 - Produce particles from 50nm-10μm
- Materials
 - NaCl
 - SRM 1690 1 μm PSL
 - Arizona Test Dust ISO 12103-1 Grade A-4 Coarse

AQSPEC

Air Quality Sensor Performance Evaluation Center

Phase 1: Initial Concentration Ramp

- 6 PM_{2.5} concentration steps from 0 to 300 μg/m³
- Response to power loss also conducted
- Inorganic and organic particle type tested

Phase 2: Effect of T and RH

- 2 temperature conditions (20 and 30°C)
- 1 optional high temperature condition of 50°C
- 3 RH conditions (40-80%)
- 2 PM_{2.5} concentrations
- 12 total T/RH/PM_{2.5} combinations required (plus 6 optional combinations)

Phase 3: Interferent Testing

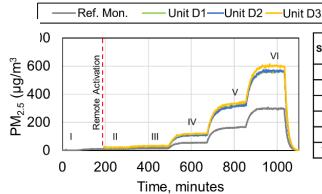
- Use of Arizona Test Dust as interfering coarse PM
- 4 coarse PM concentration conditions from 10-150 μg/m³

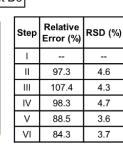
Phase 4: Temperature Cycling

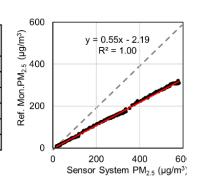
- Simulates a year's worth of cyclical environmental stress
- 143 temperature cycles from 10°C to 50°C, and back

Phase 5: Final Concentration Ramp

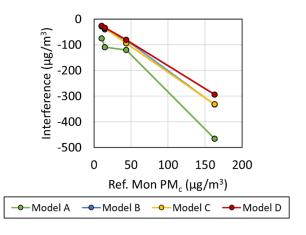
- Repeat of Phase 1
- Measures drift
- Minimum of 15 days must have elapsed since Phase 1
- Only inorganic particle type

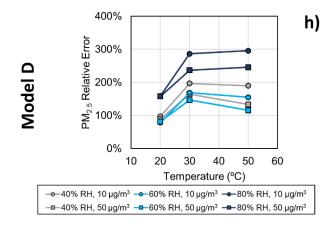


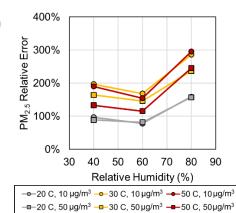



AQSPEC

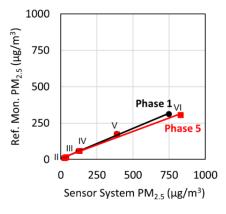
Air Quality Sensor Performance Evaluation Center


Phase 1 – Initial Concentration Ramp





Phase 3 – Interferent Testing



Phase 2 – Effect of T and RH

Phase 5 – Final Concentration Ramp

AQSPEC

Air Quality Sensor Performance Evaluation Center

Aspect	AQ-SPEC (2016)	MCERTS (2017)	RESET® (2018)	EPA (2021)	ASTM (2021)
PM Material	KCI		Cigarettes, mosq. coils	Not specified	NaCl, PSL, ATD
PM _{2.5} Ref. Mon.	EPA FEM Class III		TSI DustTrak II	EPA FEM	EPA FEM Class III
Duration	~10 days		14 days	At least 60 days	At least 15 days
Concentrations	$10-300 \ \mu g/m^3$		15-250 μ g/m ³	$10-250 \mu g/m^3$	$0-300 \mu g/m^3$
Linearity	X		Unclear	X	X
Bias	X		Χ	X	X
Precision	X		X	X	X
T/RH Effects	X			X	X
PM Size Effects					X
Aging/Drift				X	X
Data Recovery	X		Χ	X	X
Power Loss					X
Perf. Targets		X	Χ	Outdoor only	8

- Future Developments
 - AQ-SPEC to start PM_{2.5} sensor testing using ASTM D8405-21 standard test method
 - New AQ-SPEC test chamber (see AAAR talk by my colleague David Herman)
 - Home Ventilating Institute (HVI)
 Certification using this method
 - ASTM indoor CO₂ sensor standard test method under development!

Contact AQ-SPEC

www.aqmd.gov/aq-spec

info.aq-spec@aqmd.gov

Contact the Speakers

Vasileios Papapostolou, Sc.D.

Program Supervisor, AQ-SPEC

vpapapostolou@aqmd.gov (909) 396-2254 Wilton Mui, Ph.D.

Air Quality Specialist

wmui@aqmd.gov

(909) 396-2260

