Field Evaluation Aeroqual AQY (v0.5)

Air Quality Sensor Performance Evaluation Center

Background

- From 12/22/2017 to 03/27/2018, three Aeroqual AQY (Version 0.5) multi-sensor units were deployed in Rubidoux and run side-by-side South Coast AQMD Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants
- Aeroqual AQY (3 units tested):
 - Sensors: Ozone Gas Sensitive Semiconductor (GSS) (non-FEM);

NO₂ – Gas Sensitive Electrochemical (GSE) (non-FEM);

PM_{2.5} – Laser Particle Counter (LPC) (non-FEM), (model SDS011 by Nova Fitness)

- Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{2.5} (µg/m³), T (degrees C), RH (%)
- Unit cost: ~\$3,000 (includes 2-yr tech support + cloud data software license)
- ➤ Time resolution: 1-min
- Units IDs: AQY 130, AQY 131 (AQY 134), AQY 132 (On 2/15/2018, entire unit AQY 131 was replaced by unit AQY 134 due to faulty NO₂ sensor)

- SCAQMD Reference instruments:
 - O₃ instrument (FEM); cost: ~\$7,000
 Time resolution; 1-min
 - > NO_x instrument (FRM); cost: ~\$11,000
 - ➤ Time resolution: 1-min
 - GRIMM (FEM PM_{2.5}); cost: \$25,000 and up
 Time resolution: 1-min
 - MetOne BAM (FEM PM_{2.5}); cost: ~\$20,000
 Time resolution: 1-hr
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - ➤ Time resolution: 1-min

Ozone (O₃) in AQY

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for ozone in the four AQYs was high (i.e., 92% for AQY 130; 76% for AQY 131; 97% for AQY 132 and 100% for AQY 134).

Aeroqual AQY; Intra-model variability

• Low measurement variability was observed between the two AQY units (130, 132) for ozone during the entire deployment period.

Aeroqual AQY vs FEM (Ozone; 5-min mean)

- AQY Ozone measurements showed very strong correlations with the corresponding FEM data (R² ~ 0.96)
- Overall, the AQY sensors underestimated ozone concentration as measured by the FEM instrument
- The AQYs seem to track well the diurnal ozone variations recorded by the FEM instrument

Aeroqual AQY vs FEM (Ozone; 1-hr mean)

- AQY Ozone measurements showed very strong correlations with the corresponding FEM data (R² ~ 0.96)
- Overall, the AQY sensors underestimated ozone concentration as measured by the FEM instrument
- The AQYs seem to track well the diurnal ozone variations recorded by the FEM instrument

Aeroqual AQY vs FEM (Ozone; 8-hr mean)

- AQY Ozone measurements showed very strong correlations with the corresponding FEM data (R² ~ 0.96)
- Overall, the AQY sensors underestimated ozone concentration as measured by the FEM instrument
- The AQYs seem to track well the diurnal ozone variations recorded by the FEM instrument

Nitrogen Dioxide (NO₂) in AQY

NO₂ Data Handling

During this AQ-SPEC field evaluation, Aeroqual corrected and calculated NO_2 in all four units, using two different approaches:

1st approach (in this report, pollutant referred to as NO₂):

- NO₂ with correction for O₃ bias using AQY ozone data in real-time
- Calculation by on-instrument Aeroqual algorithm 2nd approach (in this report, pollutant referred to as NO₂ V2)
- NO₂ with correction for O₃ and RH bias using AQY ozone and AQY RH data in real-time
- Calculation by <u>new</u> on-instrument Aeroqual algorithm

To better assist in understanding the procedures mentioned above, Aeroqual has shared all related proprietary information with AQ-SPEC

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ in the four AQYs was high (i.e., 98% for AQY 130; 95% for AQY 131; 85% for AQY 132 and 92% for AQY 134).

Aeroqual AQY; Intra-model variability

• Modearate measurement variability was observed between the two AQY units (130, 132) for nitrogen dioxide during the entire deployment period.

Aeroqual AQY vs FRM (NO₂; 5-min mean)

- AQY NO₂ measurements in AQYs 130 and 132 showed weak correlations with the corresponding FRM data (R² ~ 0.499)
- Overall, the AQY sensors underestimated NO₂ concentration as measured by the FRM instrument
- The AQYs seem to track the diurnal NO₂ variations recorded by the FRM instrument

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ V2 in the four AQYs was high (i.e., 98% for AQY 130; 99% for AQY 131; 97% for AQY 132 and 99% for AQY 134).

Aeroqual AQY; Intra-model variability

• Very low measurement variability was observed between the two AQY units (130, 132) for nitrogen dioxide (V2) during the entire deployment period.

Aeroqual AQY vs FRM (NO₂; 5-min mean)

- AQY NO₂ measurements in AQYs 130 and 132 showed strong correlations with the corresponding FRM data (R² ~ 0.77)
- The two AQYs seem to track the diurnal NO₂ variations recorded by the FRM instrument

Aeroqual AQY vs FRM (NO₂; 1-hr mean)

 $R^2 = 0.8065$

60

40

.2225x - 2.2543

60

0

20

AQY 131 (NO₂ V2)

 $R^2 = 0.7787$

40

0

n

20

AQY 130 (NO₂ V2)

- AQY NO₂ measurements in AQYs 130 and 132 showed strong correlations with the corresponding FRM data ($R^2 \sim 0.79$)
- The two AQYs seem to track the diurnal NO₂ variations recorded by the FRM instrument

Aeroqual AQY vs FRM (NO₂; 24-hr mean)

- AQY NO₂ measurements in AQYs 130 and 132 showed strong correlations with the corresponding FRM data (R² ~ 0.83)
- The two AQYs seem to track the diurnal NO₂ variations recorded by the FRM instrument

TJ

PM_{2.5} in AQY

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- AQY $PM_{2.5}$ was corrected based on AQY RH data in real-time
- Data recovery for PM_{2.5} in the four AQYs was excellent (i.e., 99% for AQY 130; 100% for AQY 131, AQY 132 and AQY 134).

Aeroqual AQY; Intra-model variability

 Very low measurement variability was observed between the two AQY units (130, 132) for PM_{2.5} during the entire deployment period.

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected FEM data (i.e. obvious outliers, negative values and invalid data-points were eliminated from data-set)
- PM_{2.5} data recovery was 68 % for the GRIMM and 88 % for the BAM.

Equivalent methods: BAM vs GRIMM

Excellent agreement between the two equivalent methods for PM_{2.5}

Aeroqual AQY vs FEM (GRIMM PM_{2.5}; 5-min mean)

- AQY PM_{2.5} measurements in AQYs 130 and 132 showed strong correlations with the corresponding FEM GRIMM data ($R^2 \sim 0.86$)
- Overall, the AQY sensors ٠ underestimated PM_{2.5} concentration as measured by the FEM instrument
- The two AQYs seem to track well the diurnal PM_{2.5} variations recorded by the FEM GRIMM instrument

150

Aeroqual AQY vs FEM (GRIMM PM_{2.5}; 1-hr mean)

- AQY PM_{2.5} measurements in AQYs 130 and 132 showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.86)
- Overall, the AQY sensors overestimated PM_{2.5} concentration as measured by the FEM instrument
- The two AQYs seem to track well the diurnal PM_{2.5} variations recorded by the FEM GRIMM instrument

Aeroqual AQY vs FEM (GRIMM PM_{2.5}; 24-hr mean)

- AQY PM_{2.5} measurements in AQYs 130 and 132 showed very strong correlations with the corresponding FEM GRIMM data (R² ~ 0.92)
- The two AQYs seem to track well the diurnal PM_{2.5} variations recorded by the FEM GRIMM instrument

30

21

Aeroqual AQY vs FEM (BAM PM_{2.5}; 1-hr mean)

- AQY PM_{2.5} measurements in AQYs 130 and 132 showed strong correlations with the corresponding FEM BAM data ($R^2 \sim 0.84$)
- Overall, the AQY sensors overestimated PM_{2.5} concentration as measured by the FEM instrument
- The two AQYs seem to track the diurnal PM_{2.5} variations recorded by the FEM BAM instrument

40

50

Aeroqual AQY vs FEM (BAM PM_{2.5}; 24-hr mean)

- AQY PM_{2.5} measurements in AQYs 130 and 132 showed very strong correlations with the corresponding FEM BAM data (R² ~ 0.90)
- Overall, the AQY sensors overestimated PM_{2.5} concentration as measured by the FEM instrument
- The two AQYs seem to track the diurnal PM_{2.5} variations recorded by the FEM BAM instrument

Aeroqual AQY vs South Coast AQMD Met Station (Temp; 5-min mean)

- AQY Temp measurements in AQYs 130 and 132 showed very strong correlations with the corresponding South Coast AQMD Met Station sensor (R² ~ 0.93)
- Overall, the AQY sensors overestimated ambient Temp as measured by the South Coast AQMD Met Station sensor
- The two AQYs seem to track the diurnal Temp variations recorded by the South Coast AQMD Met station sensor

Aeroqual AQY vs South Coast AQMD Met Station (RH; 5-min mean)

replaced by AQY 134

- AQY RH measurements in AQYs 130 and 132 showed very strong correlations with the corresponding South Coast AQMD Met Station sensor (R² ~ 0.96)
- Overall, the AQY sensors underestimated RH as measured by the South Coast AQMD Met Station sensor
- The two AQYs seem to track the diurnal RH variations recorded by the South Coast AQMD Met station sensor

25

Discussion

- With the exception of a faulty NO₂ sensor in one of the three units (AQY 131), the Aeroqual AQY v0.5 multi-sensor units (AQY 130 and 132) showed:
 - ➢ Minimal down-time: data recovery from each unit was higher than 90%
 - Low intra-model variability for all measured pollutants
- During the <u>entire</u> field deployment testing period:
 - Ozone sensors showed very strong correlations (R² ~ 0.96, 5-min mean) with the reference instrument and underestimated the corresponding FEM Ozone data
 - NO₂ V2 sensors showed strong correlations (R² ~ 0.77, 5-min mean) with the reference instrument
 - PM_{2.5} sensors showed strong correlations (GRIMM: R² ~ 0.86, 5-min mean and BAM: R² ~ 0.84, 1-hr mean)with the reference instrument, underestimated the corresponding FEM GRIMM PM_{2.5} data and overestimated the FEM BAM PM_{2.5} data
 - Temp and RH sensors showed very strong correlations (T: R² ~0.93, 5-min mean and RH: R² ~0.96, 5-min mean) with the South Coast AQMD Met Station sensors, overestimated and underestimated the corresponding South Coast AQMD Met Station Temp and RH sensors, respectively
 - No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>