Field Evaluation Aeroqual AQY (v1.0)

Air Quality Sensor Performance Evaluation Center

Background

- From 2/20/2020 to 04/22/2020, three Aeroqual AQY v1.0 multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants
- <u>Aeroqual AQY v1.0 (3 units tested)</u>:
 - > Sensors: Ozone Gas Sensitive Semiconductor (GSS); > O_3 instrument (FEM); cost: ~\$7,000
 - NO₂ Gas Sensitive Electrochemical (GSE) (non-FEM/non-FRM);
 - \geq PM₂₅ Laser Particle Counter (LPC) (non-FEM), (model) SDS011 by Nova Fitness)
 - \succ Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{2.5} (µg/m³), T (°C), RH (%)
- Unit cost: ~\$3,000 w/ modem (\$4000 including 2-yr care) package with cloud software and remote tech support)
- \succ Time resolution: 1-min
- ➤ Units IDs: 1085, 1094, 1104
- Differences from AQY v0.5
- Separate USB drive memory
- New PCB board with sensor connector •
- Real time clock added ٠
- Mounting bracket for Ozone, NO₂ and PM_{2.5} sensors •

- South Coast AQMD Reference instruments:
 - - > Time resolution; 1-min
 - \succ NO_x instrument (FRM); cost: ~\$11,000
 - Time resolution: 1-min
 - GRIMM (FEM PM_{2.5}); cost: \$25,000 and up
 - \succ Time resolution: 1-min
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - Time resolution: 1-min
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - \succ Time resolution: 1-min

Ozone (O₃) in AQY v1.0

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for ozone from all units was ~ 100%

Aeroqual AQY v1.0; Intra-model variability

- Absolute intra-model variability was ~ 2.9 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 8.7% for the ozone measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Aeroqual AQY v1.0 vs FEM (Ozone; 5-min mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding FEM ozone data (R² ~ 0.96)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the ozone concentration as measured by the FEM ozone instrument
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument

Aeroqual AQY v1.0 vs FEM (Ozone; 1-hr mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding FEM ozone data (R² ~ 0.98)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the ozone concentration as measured by the FEM instrument
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument

Aeroqual AQY v1.0 vs FEM (Ozone; 8-hr mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding FEM ozone data (R² ~ 0.98)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the ozone concentration as measured by the FEM instrument
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument

Nitrogen Dioxide (NO₂) in AQY v1.0

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 1085 and Unit 1104 is ~ 100%. Due to a Factory calibration error in the Ox sensor in Unit 1094, the NO₂ data from Unit 1094 was not included in this evaluation

Aeroqual AQY v1.0; Intra-model variability

• Absolute intra-model variability was ~ 0.7 ppb for the NO_2 measurements (calculated as the standard deviation of the three sensor means)

 Relative intra-model variability was ~ 6.7% for the NO₂ measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Aeroqual AQY v1.0 vs FRM (NO₂; 5-min mean)

Aeroqual AQY v1.0 vs FRM (NO₂; 1-hr mean)

Aeroqual AQY V1.0 vs FRM (NO₂; 24-hr mean)

- Aeroqual AQY v1.0 sensors showed moderate to strong correlations with the corresponding FRM data (0.80 < R² < 0.84)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the NO₂ concentration as measured by the FRM instrument
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal NO₂ variations as recorded by the FRM instrument

Note: Unit 1094 was excluded from the NO₂ evaluation due to an Ox sensor error

PM_{2.5} in AQY v1.0

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- AQY PM_{2.5} was corrected based on AQY RH data in real-time
- Data recovery for PM_{2.5} from all units was ~ 100%

Aeroqual AQY v1.0; Intra-model variability

- Absolute intra-model variability was ~ 0.76 μ g/m³ for the PM_{2.5} measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 17.1% for the $PM_{2.5}$ measurements

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid datapoints were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 is ~100%
- Very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} measurements (R² ~ 0.93)

Aeroqual AQY v1.0 vs FEM GRIMM (PM_{2.5}; 5-min mean)

- Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.76)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM GRIMM
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

Aeroqual AQY v1.0 vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.78)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM GRIMM
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

Aeroqual AQY v1.0 vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.88)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM GRIMM
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

Aeroqual AQY v1.0 vs FEM T640 (PM_{2.5}; 5-min mean)

- Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM T640 data (R² ~ 0.81)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

Aeroqual AQY v1.0 vs FEM T640 (PM_{2.5}; 1-hr mean)

- Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM T640 data (R² ~ 0.84)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

Aeroqual AQY v1.0 vs FEM T640 (PM_{2.5}; 24-hr mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding FEM T640 data (R² ~ 0.92)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

Aeroqual AQY v1.0 vs South Coast AQMD Met Station (Temp; 5-min mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.94)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Aeroqual AQY v1.0 vs South Coast AQMD Met Station (RH; 5-min mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three **Aeroqual AQY v1.0** sensors' data recovery for ozone, NO₂ and PM_{2.5} was ~ 100%; except for the NO₂ measurement from Unit 1094 which was not included in the evaluation
- The absolute intra-model variability was 2.9 ppb, 0.7 ppb and 0.76 μ g/m³ for ozone, NO₂ and PM_{2.5}, respectively
- The reference instruments (FEM GRIMM and FEM T640) show very strong correlations with each other for $PM_{2.5}$ mass concentration measurements (R² ~ 0.93, 1-hr mean)
- During the <u>entire</u> field deployment testing period:
 - Ozone sensors showed very strong correlations with the FEM instrument (R² ~ 0.96, 5-min mean) and overestimated the corresponding FEM data
 - NO₂ sensors showed moderate to strong correlations with the FRM instrument (0.60 < R² < 0.78, 5-min mean) and overestimated the corresponding FRM data</p>
 - PM_{2.5} sensors showed strong correlations with the FEM instrument (R² ~ 0.78 and 0.84 for FEM GRIMM and FEM T640, respectively, 1-hr mean) and underestimated the corresponding FEM data
 - Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station data (T: R² ~ 0.94 and RH: R² ~ 0.98) and overestimated the T data and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>