Field Evaluation AlphaSense OPC-N2 Sensor

Background

- From 07/10/2015 to 08/10/2015, three AlphaSense OPC-N2 particle sensors were deployed in Rubidoux and operated side-by-side with two Federal Equivalent Method (FEM) instruments measuring the same pollutant
- <u>AlphaSense(3 units tested</u>):

Particulate matter sensors (optical; non-FEM)

Each unit measures: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)

Unit cost: ~\$450

- ≻Time resolution: 15-sec
- ≻Units IDs: 216, 222, 308

- MetOne BAM (reference method):
 - ➢Beta-attenuation monitor (FEM)
 - ► Measures PM_{2.5}
 - ≻Cost: ~\$20,000
 - Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 - ➢Optical particle counter (FEM)
 - ➤Uses proprietary algorithms to calculate total PM_{1.0}, PM_{2.5}, and PM₁₀ from particle number measurements
 - ≻Cost: ~\$25,000 and up
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected sensor data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} from all three units was close to 100%

AlphaSense; intra-model variability

 Modest measurement variability was observed between the three AlphaSense OPC-N2 units tested

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected FEM data (i.e. obvious outliers, • negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{1.0}, PM_{2.5} and PM₁₀ from the GRIMM instrument and for PM_{2.5} and PM₁₀ from the BAM instrument was close to 100%.

Equivalent Methods; BAM vs GRIMM

8/9/15

8/4/15

 Good correlation between the two FEM methods for both $PM_{25} \& PM_{10}$

AlphaSense vs FEM GRIMM (PM_{1.0}; 5-min mean)

- PM_{1.0} measurements from the three AlphaSense sensors correlate well with the corresponding FEM GRIMM data (0.63 < R² < 0.82)
- Data recorded by unit 308 (yellow line) include an unusually large number of zero values which contribute to lower the correlation between this sensor and the GRIMM (R² = 0.63)
- AlphaSense sensor measurements seem to track well the typical PM_{1.0} diurnal variations recorded by the FEM instrument
- Sensor measurements largely underestimated the data recorded concurrently by the GRIMM instrument

AlphaSense vs FEM GRIMM (PM_{2.5}; 5-min mean)

- PM_{2.5} measurements from all three AlphaSense sensors correlate well with the corresponding FEM GRIMM data (0.65 < R² < 0.79)
- Data recorded by unit 308 (yellow line) include an unusually large number of zero or near-zero values which contribute to lower the correlation between this sensor and the GRIMM (R² = 0.65)
- AlphaSense measurements seem to track well the typical PM_{2.5} diurnal variations recorded by the FEM instrument

AlphaSense vs FEM GRIMM (PM₁₀; 5-min mean)

- PM₁₀ measurements from the three AlphaSense sensors show a moderate correlation with the corresponding FEM GRIMM data (0.45 < R2 < 0.56)
- Data recorded by unit 308 (yellow line) include an unusually large number of low (underestimated) values which contribute to lower the correlation between this sensor and the GRIMM (R² = 0.49)
- AlphaSense measurements seem to track well the typical PM10 diurnal variations recorded by the FEM instrument

AlphaSense vs FEM GRIMM (PM_{1.0}; 1-hr mean)

- $PM_{1.0}$ measurements from all three AlphaSense sensors correlate well with the corresponding FEM GRIMM data (0.67 < R^2 < 0.82)
- AlphaSense measurements seem to track well the typical PM_{1.0} diurnal variations recorded by the FEM instrument
- The sensors measurements largely underestimated the corresponding GRIMM data

AlphaSense vs FEM GRIMM (PM_{2.5}; 1-hr mean)

9.2455ln(x) - 5.4729

30

40

 $R^2 = 0.8046$

20

10

-FEM —Unit 216 —Unit 222 —Unit 308 50 45 40 Mass Concentration (μg/m³) 35 30 25 20 15 10 5 0 8/10/15 7/10/15 7/14/15 7/19/15 7/23/15 7/28/15 8/1/15 8/6/15

AlphaSense vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- PM_{2.5} measurements from all three ٠ AlphaSense sensors correlate well with the corresponding FEM GRIMM data $(0.66 < R^2 < 0.80)$
- AlphaSense measurements seem to track well the typical PM₂₅ diurnal variations recorded by the FEM instrument

AlphaSense vs FEM GRIMM (PM₁₀; 1-hr mean)

- PM₁₀ measurements from all three AlphaSense sensors show a moderate correlation with the corresponding FEM GRIMM data (0.46 < R² < 0.60)
- AlphaSense measurements seem to track well the typical PM₁₀ diurnal variations recorded by the FEM instrument

AlphaSense vs FEM GRIMM (PM_{1.0}; 24-hr mean)

- $PM_{1.0}$ measurements from all three AlphaSense sensors correlate well with the corresponding FEM GRIMM data (0.54 < R^2 < 0.81)
- AlphaSense measurements track the typical PM_{1.0} diurnal variations recorded by the FEM instrument
- The sensors measurements largely underestimated the GRIMM data

AlphaSense vs FEM GRIMM (PM_{2.5}; 24-hr mean)

AlphaSense vs FEM GRIMM (PM₁₀; 24-hr mean)

- PM_{10} measurements from all three AlphaSense sensors correlate well with the corresponding FEM GRIMM data (0.57 < R^2 < 0.85)
- AlphaSense measurements track the typical PM₁₀ diurnal variations recorded by the FEM instrument

AlphaSense vs FEM BAM (PM_{2.5}; 1-hr mean)

- PM_{2.5} measurements from all three AlphaSense sensors show a moderate correlation with the corresponding FEM BAM data (0.38 < R² < 0.67)
- Alphasense measurements seem to track well the typical PM_{2.5} diurnal variations recorded by the FEM BAM instrument

AlphaSense vs FEM BAM (PM₁₀; 1-hr mean)

- PM_{10} measurements from all three AlphaSense sensors show a moderate correlation with the corresponding FEM BAM data (0.41 < R^2 < 0.53)
- Alphasense measurements seem to track well the typical PM₁₀ diurnal variations recorded by the FEM BAM instrument

AlphaSense vs FEM BAM (PM_{2.5}; 24-hr mean)

AlphaSense vs FEM BAM (PM₁₀; 24-hr mean)

AlphaSense Unit 222

AlphaSense Unit 216

- PM_{10} measurements from all three AlphaSense sensors correlate well with the corresponding FEM BAM data (0.66 < R^2 < 0.92)
- AlphaSense measurements track the typical PM₁₀ diurnal variations recorded by the FEM instrument

80

Discussion

- Overall, the three AlphaSense OPC-N2 particle sensors performed well during this field testing and showed:
 - Minimal down time over a period of about one month
 - Modest intra-model variability
 - Overall good correlation with substantially more expensive instruments (GRIMM and BAM; EPA-approved FEM Methods)
- AlphaSense measurements seem to track the PM_{1.0}, PM_{2.5} and PM₁₀ diurnal variations recorded by the FEM GRIMM and BAM instruments
- AlphaSense OPC-N2 PM_{1.0} data was usually largely underestimated, while AlphaSense PM_{2.5} and PM₁₀ data were closer to the corresponding FEM values. However, no sensor calibration was performed prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions

