Field Evaluation AQMesh Monitor (v.4.0)

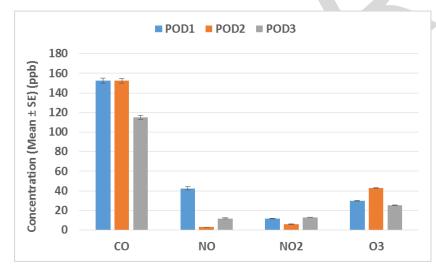
Background

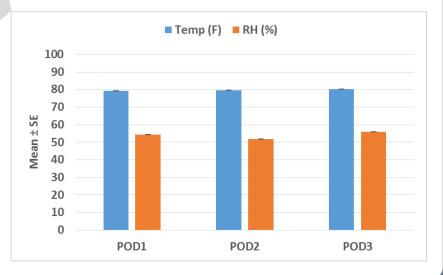
- From 06/26/2015 to 09/25/2015, three AQMesh (Version 4.0) POD sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with reference instruments measuring the same pollutants
 - <u>AQMesh (3 units tested)</u>:
 - Electrochemical sensors (non-FEM)
 - Each unit measures: CO, NO, NO₂, O₃, Temp, RH
 - ➤Unit cost: ~\$10,000
 - Time resolution: 1- or 15-min
 Units IDs: POD 1, POD 2, POD 3

South Coast AQMD Reference Instruments:

- CO instrument; FRM, cost: ~\$10,000
 - ➤ Time resolution: 1-min
- ➢ NO_X instrument; FRM NO₂, cost: ~\$11,000
 - ➤ Time resolution: 1-min
- > O₃ instrument; FEM, cost: ~\$7,000
 - ➤ Time resolution; 1-min
- Met station (T, RH, P, WS, WD); cost: ~\$5,000

➤ Time resolution: 1-min




Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for the three PODs was high (i.e. 93% for POD1, 100% for POD2 and 90% for POD3)

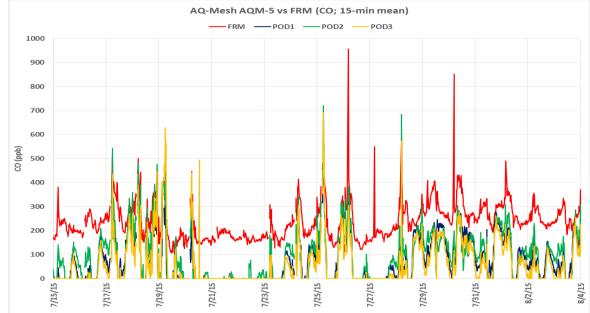
AQMesh; intra-model variability

• High measurement variations were observed between the three AQMesh units for all measured pollutants. PODs showed very low variations for T and RH

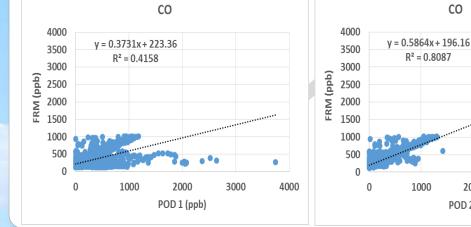
AQMesh vs FRM (CO; 15-min ave)

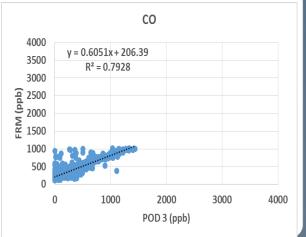
CO

 $R^2 = 0.8087$

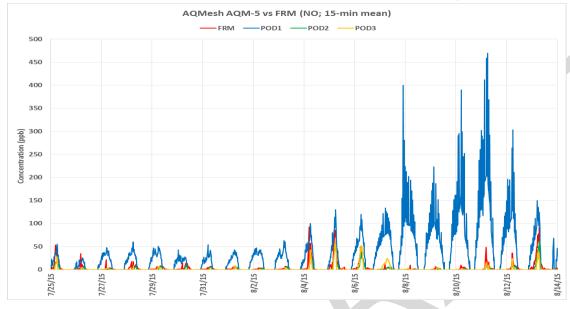

1000

2000

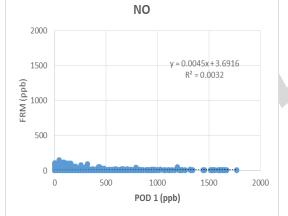

POD 2 (ppb)

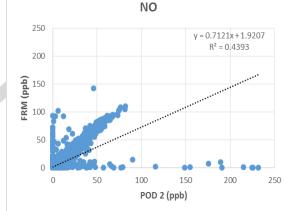

3000

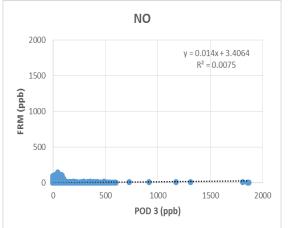
4000



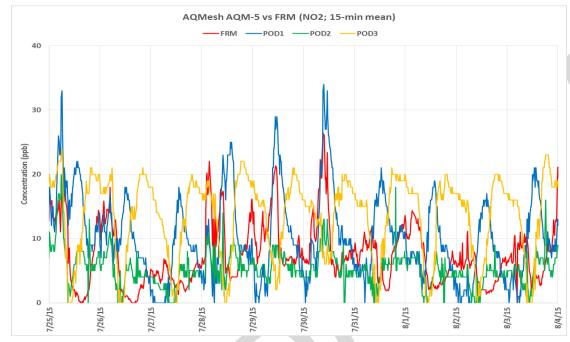
- AQMesh CO measurements showed weak-to-strong correlations with the corresponding FRM data (0.41<R²<0.81)
- The AQMesh PODs overestimated the CO concentration levels measured by the FRM instrument






AQMesh vs FRM (NO; 15-min ave)

- AQMesh NO measurements from PODs 1 and 3 showed no correlation with the corresponding FRM data (R² ~ 0.0).
- AQMesh NO measurements from POD 2 showed weak correlation with the corresponding FRM data (R² ~ 0.44).
- POD 2 overestimated NO concentration as measured the FRM instrument



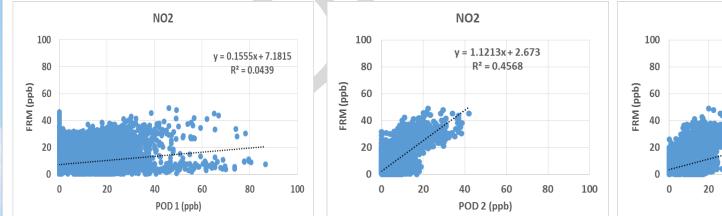
5

AQMesh vs FRM (NO2; 15-min ave)

- AQ-Mesh NO₂ sensors in PODs 1 and 3 showed no-to-very weak correlations with the corresponding FRM data (0.0<R²<0.11).
- POD 2 showed weak correlation with the corresponding FRM NO₂ measurements (R² ~ 0.46).
- AQMesh NO₂ measurements from PODs 1, 2 and 3 do not track the typical NO2 diurnal variations recorded by the FEM instrument.

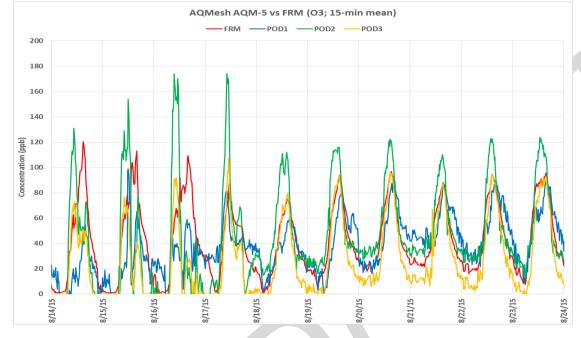
NO2

40

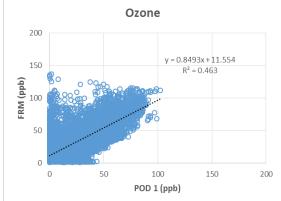

POD 3 (ppb)

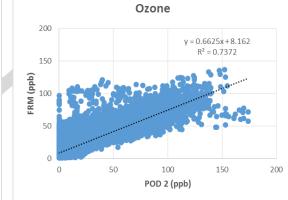
y = 0.3914x + 3.6067

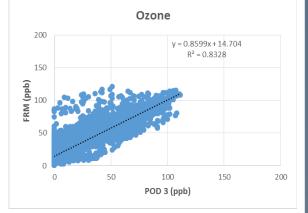
 $R^2 = 0.1103$

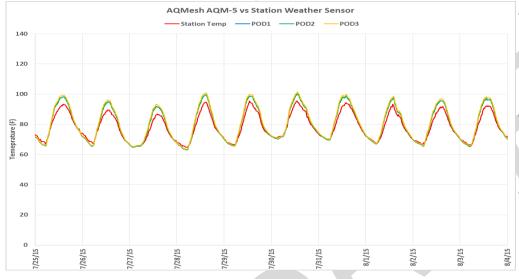

60

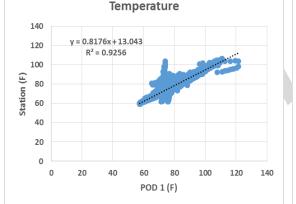
80

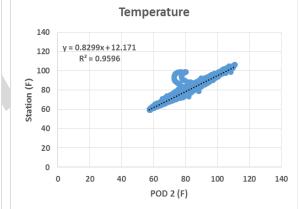


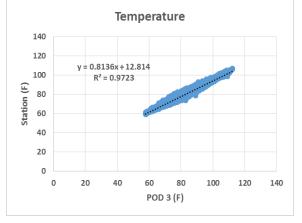

100

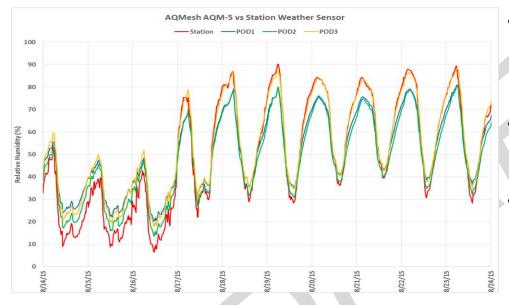

AQMesh vs FEM (O3; 15-min ave)

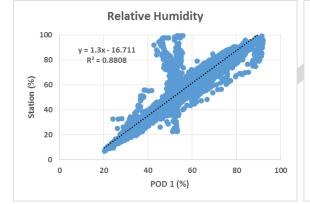

- AQMesh Ozone measurements showed weak-to-strong correlations with the corresponding FEM measurements (0.46< R²<0.84)
- AQMesh PODs sensors overestimated ozone concentrations as measured by the FEM instrument
- AQMesh ozone measurements from PODs 1, 2 and 3 seem to track the diurnal variations of ozone as recorded by the FEM instrument.

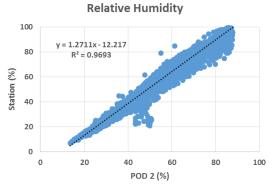





AQMesh vs South Coast AQMD Met Station (Temp; 15-min ave)


- AQMesh Temp measurements showed very strong correlations with the corresponding South Coast AQMD Met Station sensor data (0.92< R²<0.98)
- Overall, the AQMesh sensors overestimated ambient Temp as measured by the South Coast AQMD Met Station sensor
- AQMesh Temp measurements from PODs 1, 2 and 3 track the diurnal variations of Temp as recorded by the South Coast AQMD Met Station sensor.





AQMesh vs South Coast AQMD Met Station (Rel.Hum.; 15-min ave)

- AQMesh RH measurements showed strongto-very strong correlations with the corresponding South Coast AQMD Met Station sensor data (0.88< R²<0.97)
- Overall, the AQMesh sensors underestimated RH as measured by the South Coast AQMD Met Station sensor
- AQMesh RH measurements from PODs 1, 2 and 3 track the diurnal variations of RH as recorded by the South Coast AQMD Met Station sensor.

Discussion

- Overall, the three AQMesh v.4.0 PODs showed high intra-model variability for all measured pollutants. Very low POD measurement variation was observed for T and RH
- Carbon Monoxide sensors showed weak-to-strong correlations (0.41<R²<0.81, 15-min mean) with the reference instrument and overestimated the corresponding FRM CO data
- POD1 and POD3 NO sensors did not correlate (R²~0.0, 15-min mean) with the reference instrument; POD2 NO sensor showed weak correlation (R²~0.44, 15-min mean) with the reference instrument and overestimated the corresponding reference data
- POD1 and POD3 NO2 sensors did not correlate R²<0.1 with the reference instrument; POD2 NO2 sensor showed weak correlation (R²~0.46, 15-min mean) with the reference instrument
- Ozone sensors showed weak-to-strong correlations (0.46< R²<0.84, 15-min mean) with the reference instrument and overestimated the corresponding FEM Ozone data
- No sensor calibration was performed prior to the beginning of this field testing
- Field test results for the first version (v.3.0) of the AQMesh air quality sensor can be found on the AQ-SPEC website (<u>www.aqmd.gov/aq-spec</u>).
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions and known gaseous concentrations.