Field Evaluation AQMesh v3.0 - PM

Air Quality Sensor Performance Evaluation Center

Background

- From 04/11/2020 to 06/18/2020¹, three AQMesh v3.0 (hereinafter AQMesh) multisensor pods were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>AQMesh (3 units tested)</u>:
 - ➤ Gas Sensors (evaluated in 2021):
 - CO Electrochemical (Alphasense, non-FEM)
 - O₃ Electrochemical (Alphasense, non-FEM)
 - NO Electrochemical (Alphasense, non-FEM)
 - NO₂ Electrochemical (Alphasense, non-FEM)
 - SO₂ Electrochemical (Alphasense, non-FEM)
 - PM Sensors Optical Particle Counter (AQMesh OPC v3.0, non-FEM)
 - Each unit measures: CO (ppb), O₃ (ppb), NO, NO₂ and NO_x (ppb), SO₂ (ppb), PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³), T (°C), RH (%)
 - Unit cost: ~\$7,800 as tested (includes 5 gas pods +
 - PM sensor, equipped with a heated inlet), price includes daily data downloads
 - Time resolution: 5-min
 - ➤ Units IDs: 0381, 0383, 0385

¹Note: sensor data were not available between 5/5/2020 and 5/14/2020 due to preventive maintenance activities at the monitoring site

- South Coast AQMD Reference Instruments:
 - GRIMM (FEM PM_{2.5}); cost: \$25,000 and up
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³) > Time resolution: 1-min
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - > Measures $PM_{2.5}$ and PM_{10} (µg/m³)
 - Time resolution: 1-min
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 Time resolution: 1-min

Data Validation & Recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} from all units was ~ 100%

AQMesh; Intra-model Variability

- Absolute intra-model variability was ~ 1.7, 2.2 and 3.7 µg/m³ for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 23, 35 and 23% for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 is ~89% and 76%, respectively
- Strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} measurements (R² ~ 0.84)

Reference Instruments: PM₁₀ GRIMM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{10} from GRIMM and T640 is ~89% and 76%, respectively
- Strong correlations between GRIMM and T640 for PM_{10} measurements ($R^2 \sim 0.87$)

AQMesh vs GRIMM (PM_{1.0}; 5-min mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding GRIMM data $(0.55 < R^2 < 0.74)$
- Overall, the AQMesh sensors underestimated the PM₁₀ mass concentrations as measured by the GRIMM
- The AQMesh sensors seemed to track the diurnal PM_{1.0} variations as recorded by the

y = 1.1433x - 2.1007

 $R^2 = 0.7059$

10

20

Unit 0385

30

AQMesh vs FEM GRIMM (PM_{2.5}; 5-min mean)

AQMesh vs GRIMM (PM₁₀; 5-min mean)

- The AQMesh sensors showed very weak to weak correlations with the corresponding GRIMM data (0.24 < R² < 0.44)
- Overall, the AQMesh sensors underestimated the PM₁₀ mass concentrations as measured by the GRIMM
- The AQMesh sensors did not seem to track the diurnal PM₁₀ variations as recorded by the GRIMM

AQMesh vs GRIMM (PM_{1.0}; 1-hr mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding GRIMM data (0.55 < R² < 0.76)
- Overall, the AQMesh sensors underestimated the PM_{1.0} mass concentrations as measured by the GRIMM
- The AQMesh sensors seemed to track the diurnal PM_{1.0} variations as recorded by the GRIMM

AQMesh vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The AQMesh sensors showed weak to strong correlations with the corresponding FEM GRIMM data (0.48 < R² < 0.75)
- Overall, the AQMesh sensors underestimated the PM_{2.5} mass concentrations as measured by the FEM GRIMM
- The AQMesh sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

AQMesh vs GRIMM (PM₁₀; 1-hr mean)

- The AQMesh sensors showed very weak to moderate correlations with the corresponding GRIMM data (0.28 < R² < 0.62)
- Overall, the AQMesh sensors underestimated the PM₁₀ mass concentration as measured by the GRIMM
- The AQMesh sensors seemed to track the diurnal PM₁₀ variations as recorded by the GRIMM

AQMesh vs GRIMM (PM_{1.0}; 24-hr mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding GRIMM data (0.66 < R² ~ 0.87)
- Overall, the AQMesh sensors underestimated the PM_{1.0} mass concentrations as measured by the GRIMM
- The AQMesh sensors seemed to track the diurnal PM_{1.0} variations as recorded by the GRIMM

AQMesh vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding FEM GRIMM data (0.53 < R² < 0.87)
- Overall, the AQMesh sensors underestimated the PM_{2.5} mass concentrations as measured by the FEM GRIMM
- The AQMesh sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

AQMesh vs GRIMM (PM₁₀; 24-hr mean)

- The AQMesh sensors showed very weak to moderate correlations with the corresponding GRIMM data (0.22 < R² < 0.68)
- Overall, the AQMesh sensors underestimated the PM₁₀ mass concentration as measured by the GRIMM
- The AQMesh sensors seemed to track the diurnal PM₁₀ variations as recorded by the GRIMM

AQMesh vs FEM T640 (PM_{2.5}; 5-min mean)

AQMesh vs T640 (PM₁₀; 5-min mean)

AQMesh vs FEM T640 (PM_{2.5}; 1-hr mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding FEM T640 data (0.61 < R² < 0.82)
- Overall, the AQMesh sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The AQMesh sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

AQMesh vs T640 (PM₁₀; 1-hr mean)

Unit 0383

Unit 0381

18

150

Unit 0385

AQMesh vs FEM T640 (PM_{2.5}; 24-hr mean)

- The AQMesh sensors showed moderate to strong correlations with the corresponding FEM T640 data (0.63 < R² < 0.86)
- Overall, the AQMesh sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The AQMesh sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

AQMesh vs T640 (PM₁₀; 24-hr mean)

- The AQMesh sensors showed very weak to strong correlations with the corresponding T640 data (0.29 < R² < 0.81)
- Overall, the AQMesh sensors underestimated the PM₁₀ mass concentrations as measured by the T640
- The AQMesh sensors seemed to track the diurnal PM₁₀ variations as recorded by the T640

AQMesh vs South Coast AQMD Met Station (Temp; 5-min mean)

- The AQMesh sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.97)
- Overall, the AQMesh sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The AQMesh sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

AQMesh vs South Coast AQMD Met Station (RH; 5-min mean)

- The AQMesh sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.93)
- Overall, the AQMesh sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The AQMesh sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three **AQMesh** sensors' data recovery for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} from all units was ~ 100%.
- The absolute intra-model variability was ~ 1.7, 2.2, and 3.7 μg/m³ for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively.
- The reference instruments (GRIMM and T640) show strong correlations with each other for PM_{2.5} mass concentration measurements (R² ~ 0.84, 1-hr mean) and PM₁₀ mass concentration measurements (R² ~ 0.87, 1-hr mean).
- PM_{1.0} mass concentrations measured by the AQMesh sensors showed moderate to strong correlations with the corresponding GRIMM data (0.55 < R² < 0.76, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM.
- PM_{2.5} mass concentrations measured by the AQMesh sensor showed weak to strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.48 < R² < 0.82; 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640.
- PM₁₀ mass concentrations measured by the AQMesh sensors showed very weak to moderate correlations with the GRIMM (0.28 < R² < 0.62; 1-hr mean) and T640 data (0.33 < R² < 0.70; 1-hr mean) and underestimated PM₁₀ mass concentrations measured by GRIMM and T640.
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>