Field Evaluation Clarity Node PM Sensor

Background

- From 2/15/2018 to 04/25/2018, three **Clarity Movement Co.** sensor nodes were deployed at our (SCAQMD) Rubidoux station and ran side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutant
- Clarity Movement Co. Sensor node [3 nodes tested]:
 - ➤ Particle sensor (optical; non-FEM)
 - ➤ Each sensor reports:
 - $ightharpoonup PM_{2.5}$ mass concentration (µg/m³)
 - ➤ NO₂, CO₂ and TVOC (Under Development)
 - > Time resolution: 2-4 minutes
 - Unit cost: ~\$1,300 (includes 1-yr of cloud data access, cellular connectivity, and tech support) Node #1 (N5L7); Node #2 (Y3GK); Node #3 (5KGG)

MetOne BAM (reference method):

- ➤ Beta-attenuation monitors (FEM)
- ➤ Measures PM_{2.5} & PM₁₀ mass (µg/m³)
- ➤ Unit cost: ~\$20,000
- ➤ Time resolution: 1-hr

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery PM_{2.5} mass concentration from all three Clarity Node sensors was between 97 and 100%.

Clarity Node; intra-model variability

 Very low measurement variations were observed between the different Clarity Node sensors for PM_{2.5} mass concentrations (μg/m³).

PM_{2.5} Data Handling

- On 01/24/18, Clarity released updated default temperature and relative humidity correction factors. All prior PM_{2.5} readings from Clarity Node deployments were retroactively re-calculated with the new correction factors.
- Due to the correction factor release on 01/24/18, the start date for the AQ-SPEC field evaluation was set for 02/15/18.
- Data handling: sensor readings are uploaded by the Clarity Node to Clarity Cloud. In the Clarity Cloud, a "Smart Calibration" can be applied to PM_{2.5} readings with correction factors for bias, offset, temperature, and humidity. The resulting calibrated measurements are made available to the user.
- In the AQ-SPEC field evaluation, only default temperature and humidity correction factors were applied from the 01/24/18 release. These factors were not changed during the evaluation time period.

Clarity Node vs FEM BAM (PM_{2.5}; 1-hr mean)

 Clarity Node PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.73)

Clarity Node vs FEM BAM (PM_{2.5}; 1-hr mean)

Clarity Node sensors track well the diurnal PM_{2.5} variations recorded by the FEM BAM instrument

Clarity Node vs FEM BAM (PM_{2.5}; 24-hr mean)

 Clarity Node PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.84)

Clarity Node vs FEM BAM (PM_{2.5}; 24-hr mean)

• Clarity Node sensors track well the diurnal PM_{2.5} variations recorded by the FEM BAM instrument

Discussion

- The three Clarity Movement Co Nodes performed well and showed:
 - ➤ Minimal down-time: data recovery from each unit was higher than 97%
 - ➤ Low intra-model variability for PM_{2.5} measurements between Nodes
- During the field deployment testing period:
 - $ightharpoonup PM_{2.5}$ sensors correlated well with a more expensive FEM instrument (R² > 0.73, 1-hr mean)
 - Clarity Node sensors track the diurnal PM_{2.5} variations recorded by the BAM instruments
- No sensor calibration was performed by SCAQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- These results are still preliminary