Field Evaluation
Igienair Zaack AQI
From 11/13/2020 to 01/08/2021, three Igienair Zaack AQI (hereinafter Zaack AQI) multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants.

Zaack AQI (3 units tested):
- Gas Sensors: Electrochemical; non-FEM (Alphasense)
- Particle Sensor – Optical; non-FEM (Alphasense OPC R1)
- Each unit measures: O$_3$ (ppb), NO$_2$ (ppb), CO (ppb), PM$_{1.0}$, PM$_{2.5}$ and PM$_{10}$ (μg/m3), T ($^\circ$C), RH (%)
- Units also measure VOC (ppb) and CO$_2$ (ppm)
- Unit cost: $3000 + $1199 Yearly calibration and maintenance contract
- Time resolution: 30-sec
- Units IDs: 1264, 1271, 1332

South Coast AQMD Reference instruments:
- O$_3$ instrument (FEM); cost: ~$7,000
- Time resolution; 1-min
- CO instrument (FRM); cost: ~$10,000
- Time resolution; 1-min
- NO$_2$ instrument (FRM); cost: ~$11,000
- Time resolution: 1-min
- MetOne BAM (FEM PM$_{2.5}$ & FEM PM$_{10}$); cost: ~$20,000
- Time resolution: 1-hr
- Teledyne API T640 (FEM PM$_{2.5}$); cost: $21,000
- Time resolution: 1-min
- Met station (T, RH, P, WS, WD); cost: ~$5,000
- Time resolution: 1-min
Ozone (O_3) in Zaack AQI
Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for ozone from all units was ~ 90%

Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 3.9 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 12.9% for the ozone measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)
Zaack AQI vs FEM (Ozone; 5-min mean)

- Zaack AQI sensors did not correlate with the corresponding FEM ozone data ($R^2 < 0.01$)
- Overall, the Zaack AQI sensors overestimated the ozone concentration as measured by the FEM ozone instrument
- The Zaack AQI sensors did not seem to track the diurnal ozone variations as recorded by the FEM instrument
Summary: Ozone

<table>
<thead>
<tr>
<th></th>
<th>Average of 3 Sensors, Ozone</th>
<th>Zaack AQI vs FEM, Ozone</th>
<th>FEM Ozone (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (ppb)</td>
<td>SD (ppb)</td>
<td>R²</td>
</tr>
<tr>
<td>5-min</td>
<td>29.2</td>
<td>19.2</td>
<td>0.005 to 0.01</td>
</tr>
</tbody>
</table>

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).
² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.
Nitrogen Dioxide (NO₂) in Zaack AQI
Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO\textsubscript{2} from Unit 1264, Unit 1271 and Unit 1332 was ~ 99%, 94% and 99% respectively.

Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 0.67 ppb for the NO\textsubscript{2} measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.5% for the NO\textsubscript{2} measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)
Zaack AQI vs FRM (NO₂; 5-min mean)

- Zaack AQI sensors showed moderate correlations with the corresponding FRM NO₂ data (0.53 < R² < 0.58)
- Overall, the Zaack AQI sensors underestimated the NO₂ concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal NO₂ variations as recorded by the FRM instrument
• Zaack AQI sensors showed moderate correlations with the corresponding FRM data (0.55 < $R^2 < 0.61$)

• Overall, the Zaack AQI sensors underestimated the NO$_2$ concentration as measured by the FRM instrument.

• The Zaack AQI sensors seemed to track the diurnal NO$_2$ variations as recorded by the FRM instrument.
Zaack AQI vs FRM (NO$_2$; 24-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FRM data ($0.74 < R^2 < 0.83$)
- Overall, the Zaack AQI sensors underestimated the NO$_2$ concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal NO$_2$ variations as recorded by the FRM instrument
Summary: NO₂

<table>
<thead>
<tr>
<th></th>
<th>Average of 3 Sensors, NO₂</th>
<th>Zaack AQI vs FRM, NO₂</th>
<th>FRM NO₂ (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (ppb)</td>
<td>SD (ppb)</td>
<td>R²</td>
</tr>
<tr>
<td>5-min</td>
<td>18.5</td>
<td>9.0</td>
<td>0.53 to 0.58</td>
</tr>
<tr>
<td>1-hr</td>
<td>18.6</td>
<td>8.6</td>
<td>0.56 to 0.61</td>
</tr>
<tr>
<td>24-hr</td>
<td>18.4</td>
<td>4.8</td>
<td>0.74 to 0.82</td>
</tr>
</tbody>
</table>

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.
Carbon Monoxide (CO) in Zaack AQI
Data validation & recovery

• Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
• Data recovery for CO from Unit 1264, Unit 1271 and Unit 1332 was ~ 87%, 64% and 83% respectively.

Zaack AQI; Intra-model variability

• Absolute intra-model variability was ~ 12.1 ppb for the CO measurements (calculated as the standard deviation of the three sensor means)
• Relative intra-model variability was ~ 3.8% for the CO measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)
Zaack AQI vs FRM (CO; 5-min mean)

- Zaack AQI sensors showed strong correlations with the corresponding FRM CO data ($0.84 < R^2 < 0.88$)
- Overall, the Zaack AQI sensors underestimated the CO concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal CO variations as recorded by the FRM instrument
Zaack AQI vs FRM (CO; 1-hr mean)

- Zaack AQI sensors showed very strong correlations with the corresponding FRM CO data (0.90 < R² < 0.92)
- Overall, the Zaack AQI sensors underestimated the CO concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal CO variations as recorded by the FRM instrument
Zaack AQI vs FRM (CO; 24-hr mean)

- Zaack AQI sensors showed strong to very strong correlations with the corresponding FRM CO data ($0.79 < R^2 < 0.92$)
- Overall, the Zaack AQI sensors underestimated the CO concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal CO variations as recorded by the FRM instrument

Graph:
- Zaack AQI vs FRM CO
 - FRM
 - Unit 1264
 - Unit 1271
 - Unit 1332

Equations:
- **FRM vs Unit 1264**
 - $y = 1.7063x + 64.64$
 - $R^2 = 0.9145$
- **FRM vs Unit 1271**
 - $y = 1.034x + 256.73$
 - $R^2 = 0.7932$
- **FRM vs Unit 1332**
 - $y = 1.6625x + 108.09$
 - $R^2 = 0.9154$
Summary: CO

<table>
<thead>
<tr>
<th>Average of 3 Sensors CO</th>
<th>Zaack AQI vs FRM, CO</th>
<th>FRM CO (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>FRM Average</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>FRM SD</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>Range during the field evaluation</td>
</tr>
<tr>
<td>5-min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (ppb)</td>
<td>275.3</td>
<td>476.3</td>
</tr>
<tr>
<td>SD (ppb)</td>
<td>207.7</td>
<td>331.8</td>
</tr>
<tr>
<td>R²</td>
<td>0.84 to 0.87</td>
<td>115.5 to 2312.9</td>
</tr>
<tr>
<td>Slope</td>
<td>1.22 to 1.64</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>122.3 to 259.9</td>
<td></td>
</tr>
<tr>
<td>MBE¹ (ppb)</td>
<td>-275.7 to -329.1</td>
<td></td>
</tr>
<tr>
<td>MAE² (ppb)</td>
<td>276.0 to 329.6</td>
<td></td>
</tr>
<tr>
<td>RMSE³ (ppb)</td>
<td>525.6 to 568.5</td>
<td></td>
</tr>
<tr>
<td>1-hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (ppb)</td>
<td>285.9</td>
<td>490.4</td>
</tr>
<tr>
<td>SD (ppb)</td>
<td>198.7</td>
<td>328.4</td>
</tr>
<tr>
<td>R²</td>
<td>0.90 to 0.92</td>
<td>120.3 to 1846.7</td>
</tr>
<tr>
<td>Slope</td>
<td>1.25 to 1.69</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>108.9 to 252.1</td>
<td></td>
</tr>
<tr>
<td>MBE¹ (ppb)</td>
<td>-283.2 to -339.6</td>
<td></td>
</tr>
<tr>
<td>MAE² (ppb)</td>
<td>283.3 to 339.6</td>
<td></td>
</tr>
<tr>
<td>RMSE³ (ppb)</td>
<td>324.5 to 356.2</td>
<td></td>
</tr>
<tr>
<td>24-hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (ppb)</td>
<td>281.5</td>
<td>481.1</td>
</tr>
<tr>
<td>SD (ppb)</td>
<td>98.1</td>
<td>178.1</td>
</tr>
<tr>
<td>R²</td>
<td>0.79 to 0.92</td>
<td>158.5 to 870.9</td>
</tr>
<tr>
<td>Slope</td>
<td>1.03 to 1.71</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>64.6 to 256.7</td>
<td></td>
</tr>
<tr>
<td>MBE¹ (ppb)</td>
<td>-242.3 to -268.8</td>
<td></td>
</tr>
<tr>
<td>MAE² (ppb)</td>
<td>242.3 to 262.8</td>
<td></td>
</tr>
<tr>
<td>RMSE³ (ppb)</td>
<td>258.2 to 279.4</td>
<td></td>
</tr>
</tbody>
</table>

1. Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

2. Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

3. Root Mean Square Error (RMSE): another metric to calculate measurement errors.
PM in Zaack AQI
Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1264 and Unit 1271 was ~ 100% for all PM fractions. Unit 1332 data was not included for further analysis due to the malfunction of the PM sensor.

Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 0.08, 1.3 and 6.9 μg/m³ for the PM_{1.0}, PM_{2.5} and PM_{10}, respectively. (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 1.4%, 8.5% and 10.8% for the PM_{1.0}, PM_{2.5} and PM_{10}, respectively. (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

![Graphs showing 5-min mean mass conc. for PM_{1.0}, PM_{2.5}, and PM_{10}](image)
Reference Instruments: PM$_{2.5}$

FEM BAM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM$_{2.5}$ from FEM BAM and FEM T640 is ~97% and 100%, respectively.
- Very strong correlations between FEM BAM and FEM T640 for PM$_{2.5}$ measurements ($R^2 \sim 0.90$)
Reference Instruments: PM$_{10}$
FEM BAM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM$_{10}$ from FEM BAM and T640 is ~99% and 100%, respectively.
- Strong correlations between FEM BAM and T640 for PM$_{10}$ measurements ($R^2 \sim 0.88$)

![Graph showing PM$_{10}$ 1-hr mean concentration over time for FEM BAM and T640.](image)

![Scatter plot showing strong correlation between FEM BAM and T640 for PM$_{10}$ measurements.](image)
Zaack AQI vs T640 (PM$_{1.0}$; 5-min mean)

- Zaack AQI sensors showed strong correlations with the corresponding T640 data ($0.77 < R^2 < 0.83$)
- Overall, the Zaack AQI sensors underestimated the PM$_{1.0}$ mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{1.0}$ variations as recorded by the T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM T640 (PM$_{2.5}$; 5-min mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM T640 data ($0.79 < R^2 < 0.82$)
- Overall, the Zaack AQI sensors underestimated the PM$_{2.5}$ mass concentration as measured by the FEM T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{2.5}$ variations as recorded by the FEM T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs T640 (PM\textsubscript{10}; 5-min mean)

- Zaack AQI sensors showed moderate to strong correlations with the corresponding T640 data (0.68 < R2 < 0.72)
- Overall, the Zaack AQI sensors overestimated the PM\textsubscript{10} mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM\textsubscript{10} variations as recorded by the T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs T640 (PM$_{1.0}$; 1-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding T640 data (0.77 < R^2 < 0.83).
- Overall, the Zaack AQI sensors underestimated the PM$_{1.0}$ mass concentration as measured by the T640.
- The Zaack AQI sensors seemed to track the diurnal PM$_{1.0}$ variations as recorded by the T640.

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
• Zaack AQI sensors showed strong correlations with the corresponding FEM T640 data (0.80 < R² < 0.83)
• Overall, the Zaack AQI sensors underestimated the PM₂.₅ mass concentration as measured by the FEM T640
• The Zaack AQI sensors seemed to track the diurnal PM₂.₅ variations as recorded by the FEM T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs T640 (PM$_{10}$; 1-hr mean)

- Zaack AQI sensors showed moderate to strong correlations with the corresponding T640 data ($0.69 < R^2 < 0.73$)
- Overall, the Zaack AQI sensors overestimated the PM$_{10}$ mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{10}$ variations as recorded by the T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs T640 (PM$_{1.0}$; 24-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding T640 data ($0.77 < R^2 < 0.87$)
- Overall, the Zaack AQI sensors underestimated the PM$_{1.0}$ mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{1.0}$ variations as recorded by the T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM T640 (PM$_{2.5}$; 24-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM T640 data ($0.83 < R^2 < 0.88$)
- Overall, the Zaack AQI sensors underestimated the PM$_{2.5}$ mass concentration as measured by the FEM T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{2.5}$ variations as recorded by the FEM T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs T640 (PM$_{10}$; 24-hr mean)

- Zaack AQI sensors showed moderate correlations with the corresponding T640 data ($0.66 < R^2 < 0.70$)
- Overall, the Zaack AQI sensors overestimated the PM$_{10}$ mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM$_{10}$ variations as recorded by the T640

Note: Unit 1332 is excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM BAM (PM$_{2.5}$; 1-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM BAM data ($0.72 < R^2 < 0.74$)
- Overall, the Zaack AQI sensors overestimated the PM$_{2.5}$ mass concentration as measured by the FEM BAM
- The Zaack AQI sensors seemed to track the diurnal PM$_{2.5}$ variations as recorded by the FEM BAM

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM BAM (PM$_{10}$; 1-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM BAM data ($0.84 < R^2 < 0.86$)
- Overall, the Zaack AQI sensors overestimated the PM$_{10}$ mass concentration as measured by the FEM BAM
- The Zaack AQI sensors seemed to track the diurnal PM$_{10}$ variations as recorded by the FEM BAM

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM BAM (PM$_{2.5}$; 24-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM BAM data ($0.80 < R^2 < 0.85$)
- Overall, the Zaack AQI sensors overestimated the PM$_{2.5}$ mass concentration as measured by the FEM BAM
- The Zaack AQI sensors seemed to track the diurnal PM$_{2.5}$ variations as recorded by the FEM BAM

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Zaack AQI vs FEM BAM (PM$_{10}$; 24-hr mean)

- Zaack AQI sensors showed strong correlations with the corresponding FEM BAM data ($0.80 < R^2 < 0.85$)
- Overall, the Zaack AQI sensors overestimated the PM$_{10}$ mass concentration as measured by the FEM BAM
- The Zaack AQI sensors seemed to track the diurnal PM$_{10}$ variations as recorded by the FEM BAM

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.
Summary: PM

<table>
<thead>
<tr>
<th>Average of 3 Sensors, PM<sub>1.0</sub></th>
<th>Zaack AQI vs T640, PM<sub>1.0</sub></th>
<th>T640 (PM<sub>1.0</sub>, μg/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (μg/m<sup>3</sup>)</td>
<td>SD (μg/m<sup>3</sup>)</td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5-min</td>
<td>5.9</td>
<td>7.4</td>
</tr>
<tr>
<td>1-hr</td>
<td>5.9</td>
<td>7.3</td>
</tr>
<tr>
<td>24-hr</td>
<td>6.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average of 3 Sensors, PM<sub>2.5</sub></th>
<th>Zaack AQI vs BAM & T640, PM<sub>2.5</sub></th>
<th>FEM BAM and FEM T640 (PM<sub>2.5</sub>, μg/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (μg/m<sup>3</sup>)</td>
<td>SD (μg/m<sup>3</sup>)</td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5-min</td>
<td>15.1</td>
<td>13.2</td>
</tr>
<tr>
<td>1-hr</td>
<td>15.1</td>
<td>12.9</td>
</tr>
<tr>
<td>24-hr</td>
<td>15.1</td>
<td>8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average of 3 Sensors, PM<sub>10</sub></th>
<th>Zaack AQI vs BAM & T640, PM<sub>10</sub></th>
<th>FEM BAM and T640 (PM<sub>10</sub>, μg/m<sup>3</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (μg/m<sup>3</sup>)</td>
<td>SD (μg/m<sup>3</sup>)</td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5-min</td>
<td>64.4</td>
<td>48.7</td>
</tr>
<tr>
<td>1-hr</td>
<td>64.4</td>
<td>46.0</td>
</tr>
<tr>
<td>24-hr</td>
<td>64.4</td>
<td>26.8</td>
</tr>
</tbody>
</table>

1. Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).
2. Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.
3. Root Mean Square Error (RMSE): another metric to calculate measurement errors.
Zaack AQI vs South Coast AQMD Met Station (Temp; 5-min mean)

- Zaack AQI sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data ($0.94 < R^2 < 0.96$)
- Overall, the Zaack AQI sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Zaack AQI sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station
Zaack AQI vs South Coast AQMD Met Station
(RH; 5-min mean)

- Zaack AQI sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data ($R^2 \approx 0.98$)
- Overall, the Zaack AQI sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Zaack AQI sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

\[y = 1.5449x - 16.889 \]
\[R^2 = 0.9786 \]

\[y = 1.5468x - 15.845 \]
\[R^2 = 0.9764 \]

\[y = 1.5502x - 13.146 \]
\[R^2 = 0.9782 \]
Discussion

- The three Zaack AQI sensors’ average data recovery for ozone, NO\textsubscript{2} and CO was ~ 90%, 97% and 78%; respectively. Data recovery from Unit 1264 and Unit 1271 was ~ 100% for all PM fractions.

- The absolute intra-model variability was 3.9 ppb, 0.67 ppb and 12.1 ppb for ozone, NO\textsubscript{2} and CO, respectively. Absolute intra-model variability for Unit 1264 and Unit 1271 was ~ 0.08, 1.3 and 6.9 μg/m3 for the PM\textsubscript{1.0}, PM\textsubscript{2.5} and PM\textsubscript{10}, respectively.

- The reference instruments (FEM BAM and FEM T640) showed very strong and strong correlations with each other for PM\textsubscript{2.5} and PM\textsubscript{10} mass concentration measurements (R2 ~ 0.90 and R2 ~ 0.88, 1-hr mean), respectively.

- During the entire field deployment testing period:
 - Ozone sensors did not correlate with the FEM instrument (R2 < 0.01, 5-min mean) and overestimated the corresponding FEM data
 - NO\textsubscript{2} sensors showed moderate correlations with the FRM instrument (0.53 < R2 < 0.58, 5-min mean) and underestimated the corresponding FRM data
 - CO sensors showed strong correlations with the FRM instrument (0.84 < R2 < 0.88, 5-min mean) and underestimated the corresponding FRM data
 - The sensors (Unit 1264 and Unit 1271) showed strong correlations with the corresponding PM\textsubscript{1.0} data (0.77 < R2 < 0.83, 1-hr mean); strong correlations with the corresponding PM\textsubscript{2.5} data (0.72 < R2 < 0.83, 1-hr mean) and moderate to strong correlations with the corresponding PM\textsubscript{10} data (0.69 < R2 < 0.86, 1-hr mean). Overall, the sensors underestimated the corresponding PM\textsubscript{1.0} and PM\textsubscript{2.5} data and overestimated the corresponding PM\textsubscript{10} data.
 - Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station data (T: R2 ~ 0.95 and RH: R2 ~ 0.98) and overestimated the T data and underestimated the RH data as recorded by the South Coast AQMD Met Station

- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.

- These results are still preliminary