Field Evaluation IQAir AirVisual Pro (v1.1683) Sensor

Background

- From 08/15/2018 to 10/11/2018, three **IQAir AirVisual Pro (v1.1683)** (hereinafter IQAir AirVisual Pro) sensors were deployed at a SCAQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with three reference instruments measuring the same pollutants
- <u>IQAir AirVisual Pro (3 units tested)</u>:
 - Particle sensor (optical; non-FEM) Each unit measures: PM_{2.5} (µg/m³), Temperature (°F/°C), Relative Humidity (%)
 - Sensor also measures PM_{1.0} and PM₁₀ (µg/m³), carbon dioxide (ppm) and VOC (ppb)
 - ➤ Unit cost: ~\$270
 - ➤ Time resolution: 10 seconds
 - ➤ Units IDs: TP7S, YCYL, MXC7
 - Differences from 1st Generation: Improved PM_{2.5} sensor with a further enhanced calibration process

- MetOne BAM (reference instrument):
 - Beta-attenuation monitor (FEM PM_{2.5} & PM₁₀)
 - Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$20,000
 - ➤ Time resolution: 1-hr
- <u>GRIMM (reference instrument)</u>:
 - ➢ Optical particle counter (FEM PM_{2.5})
 - Measures PM_{1.0}, PM_{2.5}, and PM₁₀ (µg/m³)
 - > Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min
 - <u>Teledyne API T640 (reference instrument)</u>:
 - > Optical particle counter (FEM $PM_{2.5}$)
 - ightarrow Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$21,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} measurements from all units is 99.7%.

IQAir AirVisual Pro; intra-model variability

 Low measurement variability (17.3%) was observed between the three IQAir AirVisual Pro units for PM_{2.5} measurements

Reference Instruments: PM_{2.5} GRIMM, BAM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM GRIMM, FEM BAM and FEM T640 is 81.9 %, 98.9 % and 99.9 %, respectively
- Good correlations between the three reference instruments for $PM_{2.5}$ measurements (0.65 < R^2 < 0.87)

IQAir AirVisual Pro vs FEM GRIMM (PM_{2.5}; 5-min mean)

5

IQAir AirVisual Pro vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- IQAir AirVisual Pro sensors show good correlations with the corresponding FEM GRIMM data (R² ~ 0.70)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM GRIMM
- The IQAir AirVisual Pro sensors seem to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

IQAir AirVisual Pro vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- IQAir AirVisual Pro sensors correlate well with the corresponding FEM GRIMM data (R² ~ 0.85)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM GRIMM
- The IQAir AirVisual Pro sensors seem to track well the PM_{2.5} concentration variations as recorded by FEM GRIMM

7

IQAir AirVisual Pro vs FEM BAM (PM_{2.5}; 1-hr mean)

- IQAir AirVisual Pro sensors show good correlations with the corresponding FEM BAM data (R² ~ 0.73)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM BAM
- The IQAir AirVisual Pro sensors seem to track well the PM_{2.5} diurnal variations as recorded by FEM BAM

IQAir AirVisual Pro vs FEM BAM (PM_{2.5}; 24-hr mean)

- IQAir AirVisual Pro sensors show good correlations with the corresponding FEM BAM data (R² ~ 0.89)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM BAM
- The IQAir AirVisual Pro sensors seem to track well the PM_{2.5} concentration variations as recorded by FEM BAM

IQAir AirVisual Pro vs FEM T640 (PM_{2.5}; 5-min mean)

IQAir AirVisual Pro vs FEM T640 (PM_{2.5}; 1-hr mean)

- IQAir AirVisual Pro sensors show good correlations with the corresponding FEM T640 data (R² ~ 0.80)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM T640
- The IQAir AirVisual Pro sensors seem to track well the PM_{2.5} diurnal variations as recorded by FEM T640

IQAir AirVisual Pro vs FEM T640 (PM_{2.5}; 24-hr mean)

- IQAir AirVisual Pro sensors show good correlations with the corresponding FEM T640 data (R² ~ 0.88)
- Overall, the IQAir AirVisual Pro sensors underestimate the PM_{2.5} mass concentrations measured by FEM T640
- The IQAir AirVisual Pro sensors seem to track well the PM_{2.5} concentration variations as recorded by FEM T640

IQAir AirVisual Pro vs SCAQMD Met Station (Temp; 5min mean)

- IQAir AirVisual Pro temperature measurements correlate very well with the corresponding SCAQMD Met Station data (R² ~ 0.97)
- Overall, the IQAir AirVisual Pro temperature measurements seem to be accurate
- The IQAir AirVisual Pro sensors seem to track well the temperature diurnal variations as recorded by SCAQMD Met Station

13

IQAir AirVisual Pro vs SCAQMD Met Station (RH; 5min mean)

- The IQAir AirVisual Pro RH measurements correlate very well with the corresponding SCAQMD Met Station data (R² ~ 0.98)
- Overall, the IQAir AirVisual Pro RH measurements seem to be quite accurate
- The IQAir AirVisual Pro sensors seem to track well the RH diurnal variations as recorded by SCAQMD Met Station

Discussion

- The three **IQAir AirVisual Pro v1.1683** sensors' data recovery PM_{2.5} from all units was 99.7%.
- The three sensors showed low intra-model variability (17.3%) for PM_{2.5} measurements
- The reference instruments (GRIMM, BAM and T640) correlate well with each other for PM_{2.5} (R² ~ 0.78) mass concentration measurements (1-hr mean)
- PM_{2.5} mass concentration measurements measured by IQAir AirVisual Pro sensors show good correlations with the corresponding FEM GRIMM, FEM BAM and FEM T640 (R² ~ 0.70, 0.73 and 0.80, respectively, 1-hr mean) and underestimate PM_{2.5} mass concentration measured by the FEM GRIMM, FEM BAM and FEM T640
- IQAir AirVisual Pro v1.1683 is different from IQAir AirVisual Pro: improved PM_{2.5} sensor with a further enhanced calibration process
- No sensor calibration was performed by SCAQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary