Field Evaluation IQAir AirVisual Pro

Background

• From 08/02/2017 to 10/05/2017, three **IQAir AirVisual Pro** units were deployed at the SCAQMD Rubidoux air monitoring station and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants

IQAir AirVisual Pro (3 units)

- Units Measure:
 - $PM_{2.5}$ (µg/m³) (optical; non-FEM)
 - PM_{10}^{-10} (µg/m³) (optical; non-FEM) 0
 - CO_2 (ppm) 0
 - ₀ VOC (ppb)
 - Ambient Temperature (°F, °C) 0
 - Relative Humidity (%)
- Time Resolution of 10-seconds
- Unit Cost: \$269 USD
- Unit IDs:
 - 4VW9
 - WLL6 0
 - X44P 0

SCAQMD FEM Instruments

- Beta Attenuation Monitors (BAM)
- Units Measure:
 - PM_{2.5} (μg/m³) (FEM) PM₁₀ (μg/m³) (FEM) 0
- Time Resolution of 1-hour
- Unit Cost: ~\$20,000 USD

IQAir – Data Validation & Recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values, and invalid data points were eliminated from the data set)
- Data recovery for both $PM_{2.5}$ and PM_{10} from all three units were > 98%

IQAir – Intramodal Variability

 Very low intramodal variability was observed between two of the three IQAir units for both PM_{2.5} and PM₁₀, however the remaining unit displayed a larger variability

IQAir vs FEM – PM_{2.5} 1-hour Mean

- IQAir 1-hour mean PM_{2.5} mass concentration measurements correlated well with the corresponding FEM instrument data with a resulting 0.69 < R² < 0.73
- The three units tracked the diurnal PM variations recorded by the FEM instrument well
- All three IQAir units generally overestimated the data compared to the corresponding FEM data

IQAir vs FEM – PM_{2.5} 24-hour Mean

- IQAir 24-hour mean PM_{2.5} mass concentration measurements correlated well with the corresponding FEM instrument data with a resulting 0.79 < R² < 0.81
- The three units tracked the diurnal PM variations recorded by the FEM instrument well
- All three IQAir units generally overestimated the data compared to the corresponding FEM data

5

IQAir vs FEM – PM₁₀ 1-hour Mean

- IQAir 1-hour mean PM₁₀ mass concentration measurements did not correlate well with the corresponding FEM instrument data with a resulting 0.24 < R² < 0.41
- The three units tracked the diurnal PM variations recorded by the FEM instrument moderately well
- All three IQAir units generally underestimated the data compared to the corresponding FEM data

6

IQAir vs FEM – PM₁₀ 24-hour Mean

- IQAir 24-hour mean PM₁₀ mass concentration measurements did not correlate with the corresponding FEM instrument data with a resulting 0.16 < R² < 0.26
- The three units tracked the diurnal PM variations recorded by the FEM instrument moderately well
- All three IQAir units generally underestimated the data compared to the corresponding FEM data

Discussion

- Overall, the three IQAir AirVisual Pro units, each measuring PM_{2.5} and PM₁₀, were very reliable with a data recovery of > 98% across the board
- For both PM_{2.5} and PM₁₀, the units displayed an overall modest intramodal variability with Unit 4VW9 and Unit WLL6 displaying very low variability and Unit X44P displaying an increased variability
- The IQAir AirVisual Pro PM_{2.5} data for both the 1-hour and 24-hour mass concentration mean values correlated well (R² > 0.69 and R² > 0.79, respectively) with the corresponding measurements collected using a substantially more expensive FEM instrument
- The IQAir AirVisual Pro PM₁₀ data for both the 1-hour and 24-hour mass concentration mean values did not correlate well (R² < 0.41 and R² < 0.26, respectively) with the corresponding measurements collected using a substantially more expensive FEM instrument, with the units underestimating the values
- No unit calibrations were performed by SCAQMD staff in order to simulate and evaluate a true end-user performance by the units
- Laboratory chamber testing under controlled temperature and relative humidity conditions may be necessary to fully evaluate the performance of the IQAir AirVisual Pro units

All results are still preliminary