Field Evaluation Laser Egg PM Sensor

Background

- From 08/01/2016 to 09/26/2016, three **Origins Laser Egg PM Sensors** were deployed at our (SCAQMD) Rubidoux station and ran side-by-side with two Federal Equivalent Method (FEM) instruments measuring the same pollutant
- Laser Egg Sensor (3 units tested):
 - ➢Particle sensors (optical; non-FEM)
 - Each unit reports: PM_{2.5} and PM₁₀ mass concentration (µg/m³)
 - ≻PM sensor: Plantower PMS3003
 - ≻Unit cost: ~\$200

➤Time resolution: 30-sec

➤Units IDs: 9d45, 9146, CCAE

- MetOne BAM (reference method):
 - Beta-attenuation monitors (FEM)
 Measures PM_{2.5} & PM₁₀ mass (µg/m³)
 Unit cost: ~\$20,000
 - ➤Time resolution: 1-hr

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} and PM₁₀ from Laser Egg units 9146 and CCAE was 99.9%, while from unit 9d45 was 75 %.

Laser Egg sensors; intra-model variability

• Very low measurement variations were observed between the three Laser Egg devices for $PM_{2.5}$ and PM_{10} mass concentrations (µg/m³)

Laser Egg Sensor vs FEM BAM (PM_{2.5}; 1-hr mean)

- Laser Egg PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.57)
- The three sensor units tracked the diurnal PM variations recorded by the FEM BAM instrument well
- Measurements from all three Laser Egg devices are moderately accurate when compared to the corresponding FEM BAM data
- Data recovery for FEM BAM PM_{2.5} was 95.6% and for PM₁₀ 100%

Laser Egg Sensor vs FEM BAM (PM₁₀; 1-hr mean)

- Laser Egg PM₁₀ mass measurements do not correlate with the corresponding FEM BAM data (R² ~ 0.0)
- The three sensor units do not always track the diurnal variations recorded by the FEM BAM instrument
- Laser egg PM₁₀ measurements are underestimated with respect to the corresponding FEM BAM data

Laser Egg Sensor vs FEM BAM (PM_{2.5}; 24-hr mean)

- Laser Egg PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.66)
- The three sensor units tracked the diurnal PM variations recorded by the FEM BAM instrument well

b

Laser Egg Sensor vs FEM BAM (PM₁₀; 24-hr mean)

- Laser Egg PM₁₀ mass measurements do not correlate with the corresponding FEM BAM data (R² ~ 0.0)
- The three sensor units do not always track the diurnal variations recorded by the FEM BAM instrument
- Laser Egg PM₁₀ measurements are underestimated with respect to the corresponding FEM BAM data

/

- Overall, the three Laser Egg PM Sensors were reliable (data recovery was between 75 and 99.99 % for all units tested) and were characterized by very low intra-model variability
- Laser Egg PM_{2.5} sensors showed a modest correlation (R² ~ 0.58) with the corresponding measurements collected using an FEM BAM. The sensors did not correlate with the BAM for PM₁₀ (R² ~ 0.0)
- No sensor calibration was performed by SCAQMD staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions
- All results are still preliminary