Field Evaluation Liveable Cities - SLX-PM_{2.5} ## Background - From 11/20/2021 to 1/19/2022, three Liveable Cities SLX-PM_{2.5} sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-byside with Federal Equivalent Method (FEM) instruments measuring the same pollutants - <u>Liveable Cities SLX-PM_{2.5} (3 units tested</u>): - ➤ Particle sensor: optical; non-FEM (Alphasense OPC-R2) - \triangleright Each unit reports: PM_{2.5} and PM₁₀ (μ g/m³) - ➤ Unit cost: ~\$954 + \$309/year for software, reporting and cellular data - > Time resolution: 1-min - > Units IDs: 023A, 0238, 0239 - GRIMM EDM180 (reference instrument): - ➤ Optical particle counter (FEM PM_{2.5}) - \triangleright Measures PM_{1.0}, PM_{2.5}, and PM₁₀ (µg/m³) - > Cost: ~\$25,000 and up - ➤ Time resolution: 1-min - <u>Teledyne API T640 (reference instrument)</u>: - ➤ Optical particle counter (FEM PM_{2.5}) - \triangleright Measures PM_{1.0}, PM_{2.5} and PM₁₀ (μ g/m³) - > Cost: ~\$21,000 - > Time resolution: 1-min - MetOne BAM (reference instrument): - ➤ Beta-attenuation monitor (FEM PM_{2.5}, FEM PM₁₀) - \triangleright Measures PM_{2.5} and PM₁₀ (μ g/m³) - ➤ Unit cost: ~\$20,000 - > Time resolution: 1-hr ### Data validation & recovery - Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set) - Data recovery from Unit 023A, Unit 0238 and Unit 0239 was ~ 89%, 85% and 90%, respectively for all PM measurements ### Liveable Cities SLX-PM_{2.5}; intra-model variability - Absolute intra-model variability was ~ 1.52 and $4.75~\mu g/m^3$ for $PM_{2.5}$ and PM_{10} , respectively (calculated as the standard deviation of the three sensor means) - Relative intra-model variability was ~ 13.8% and 14.6% for PM_{2.5} and PM_{10,} respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means) # Reference Instruments: PM_{2.5} FEM BAM, FEM GRIMM and FEM T640 - Data recovery for PM_{2.5} from FEM BAM, FEM GRIMM and FEM T640 was ~ 90%, 100% and 98%, respectively. - Very strong correlations between the reference instruments for PM_{2.5} measurements (0.91 < R² < 0.98) were observed. # Reference Instruments: PM₁₀ FEM BAM, GRIMM and T640 - Data recovery for PM₁₀ from FEM BAM, GRIMM and T640 was ~ 99%, 100% and 98%, respectively. - Strong to very strong correlations between the reference instruments for PM₁₀ measurements (0.88 < R² < 0.96) were observed. #### Liveable Cities SLX-PM_{2.5} vs FEM GRIMM (PM_{2.5}; 5-min mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM GRIMM data (0.79 < R² < 0.83) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM #### Liveable Cities SLX-PM_{2.5} vs GRIMM (PM₁₀; 5-min mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding GRIMM data (0.71 < R² < 0.78) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM #### Liveable Cities SLX-PM_{2.5} vs FEM GRIMM (PM_{2.5}; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM GRIMM data (0.82 < R² < 0.85) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM #### Liveable Cities SLX-PM_{2.5} vs GRIMM (PM₁₀; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding GRIMM data (0.84 < R² < 0.89) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM #### Liveable Cities SLX-PM_{2.5} vs FEM GRIMM (PM_{2.5}; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed very strong correlations with the corresponding FEM GRIMM data (0.91 < R² < 0.93) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM #### Liveable Cities SLX-PM_{2.5} vs GRIMM (PM₁₀; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed very strong correlations with the corresponding GRIMM data (0.92 < R² < 0.96) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM #### Liveable Cities SLX-PM_{2.5} vs FEM T640 (PM_{2.5}; 5-min mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM T640 data (0.80 < R² < 0.83) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640 #### Liveable Cities SLX-PM_{2.5} vs T640 (PM₁₀; 5-min mean) - Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding T640 data (0.71 < R² < 0.75) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by T640 #### Liveable Cities SLX-PM_{2.5} vs FEM T640 (PM_{2.5}; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM T640 data (0.82 < R² < 0.85) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640 #### Liveable Cities SLX-PM_{2.5} vs T640 (PM₁₀; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding T640 data (0.79 < R² < 0.84) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by T640 #### Liveable Cities SLX-PM_{2.5} vs FEM T640 (PM_{2.5}; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed very strong correlations with the corresponding FEM T640 data (0.94 < R² < 0.95) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640 #### Liveable Cities SLX-PM_{2.5} vs T640 (PM₁₀; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong to very strong correlations with the corresponding T640 data (0.88 < R² < 0.94) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by T640 - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by T640 #### Liveable Cities SLX-PM_{2.5} vs FEM BAM (PM_{2.5}; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM BAM data (0.79 < R² < 0.81) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM #### Liveable Cities SLX-PM_{2.5} vs FEM BAM (PM₁₀; 1-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM BAM data (0.83 < R² < 0.89) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by FEM BAM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by FEM BAM #### Liveable Cities SLX-PM_{2.5} vs FEM BAM (PM_{2.5}; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed very strong correlations with the corresponding FEM BAM data (0.93 < R² < 0.95) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM #### Liveable Cities SLX-PM_{2.5} vs FEM BAM (PM₁₀; 24-hr mean) - The Liveable Cities SLX-PM_{2.5} sensors showed very strong correlations with the corresponding FEM BAM data (0.92 < R² < 0.96) - Overall, the Liveable Cities SLX-PM_{2.5} sensors underestimated the PM₁₀ mass concentrations as measured by FEM BAM - The Liveable Cities SLX-PM_{2.5} sensors seemed to track the PM₁₀ diurnal variations as recorded by FEM BAM ## Summary | _ | Average of 3
Sensors, PM _{2.5} | | Liveable Cities SLX-PM _{2.5} vs FEM BAM, FEM GRIMM & FEM T640, PM _{2.5} | | | | | | FEM BAM, FEM GRIMM & FEM T640 (PM _{2.5} , µg/m³) | | | |-------|--|--------------------------------------|---|------------------------|---------------------------|--|--|---|---|--------------|---| | | Average (µg/m³) | SD
(µg/m³) | R ² | Slope | Intercept | MBE ¹
(μg/m³) | MAE ²
(μg/m ³) | RMSE ³
(μg/m ³) | Ref. Average | Ref. SD | Range during the field evaluation | | 5-min | 11.0 | 14.6 | 0.79 to 0.83 | 0.84 to 1.35 | 5.7 to 7.3 | -9.0 to -4.7 | 6.4 to 9.1 | 9.1 to 12.6 | 17.4 to 18.5 | 15.7 to 17.8 | 0.4 to 165.7 | | 1-hr | 11.0 | 14.6 | 0.79 to 0.85 | 0.76 to 1.37 | 4.4 to 7.0 | -9.0 to -1.2 | 5.5 to 9.1 | 8.0 to 12.3 | 15.5 to 18.5 | 15.0 to 17.7 | 0 to 112.2 | | 24-hr | 11.0 | 12.3 | 0.91 to 0.94 | 0.89 to 1.53 | 3.7 to 6.5 | -8.9 to -2.2 | 3.5 to 8.9 | 6.4 to 11.6 | 15.5 to 18.6 | 12.2 to 15.7 | 2.4 to 86.7 | | | Average of 3
Sensors, PM ₁₀ | | Liveable Cities SLX-PM ₁₀ vs FEM BAM, GRIMM & T640, PM ₁₀ | | | | | | FEM BAM, GRIMM & T640 (PM ₁₀ , μg/m ³) | | | | | | • | Liveab | le Cities SL | K-PM ₁₀ vs FEN | I BAM, GRII | VIM & T640 | , PM ₁₀ | FEM BAM, (| GRIMM & TO | 640 (PM ₁₀ , μg/m ³) | | | | s, PM ₁₀ | Liveab
R ² | le Cities SL)
Slope | C-PM ₁₀ vs FEN | MBE ¹
(µg/m ³) | MAE ²
(μg/m ³) | , PM ₁₀
RMSE ³
(μg/m ³) | FEM BAM, (| GRIMM & TO | Range during the field evaluation | | 5-min | Sensor
Average | s, PM ₁₀ | | | 10 | MBE ¹ (µg/m³) | MAE ²
(µg/m ³) | RMSE ³ | · | | Range during the | | 5-min | Sensor
Average
(µg/m³) | s, PM ₁₀
SD
(μg/m³) | R ² | Slope | Intercept | MBE ¹ (μg/m ³) -16.2 to 0.9 | MAE ²
(μg/m ³)
11.9 to 18.1 | RMSE ³ (µg/m ³) | Ref. Average | Ref. SD | Range during the field evaluation | ¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values). ² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments. ³ Root Mean Square Error (RMSE): another metric to calculate measurement errors. ### Discussion - The three **Liveable Cities SLX-PM_{2.5}** sensors' data recovery from Unit 023A, Unit 0238 and Unit 0239 was ~ 89%, 85% and 90%, respectively for all PM measurements - The absolute intra-model variability was ~ 1.52 and $4.75 \mu g/m^3$ for PM_{2.5} and PM₁₀, respectively - Very strong correlations between FEM BAM, FEM GRIMM and FEM T640 for PM_{2.5} (0.91 < R² < 0.98, 1-hr mean) and strong to very strong correlations between FEM BAM, GRIMM and T640 for PM₁₀ (0.88 < R² < 0.96, 1-hr mean) mass concentration measurements - PM_{2.5} mass concentrations measured by the Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding FEM GRIMM, FEM T640 and FEM BAM data (0.79 < R² < 0.85, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM, FEM T640 and FEM BAM - PM₁₀ mass concentrations measured by the Liveable Cities SLX-PM_{2.5} sensors showed strong correlations with the corresponding GRIMM, T640 and FEM BAM data (0.79 < R² < 0.89; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM, T640 and FEM BAM - No sensor calibration was performed by South Coast AQMD Staff for this evaluation - Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions - All results are still preliminary