Field Evaluation of the Met One Neighborhood Monitor

 From 06/01/2015 to 07/15/2015, two MetOne Neighborhood Monitor units were deployed in Rubidoux and run side-by-side two different Federal Equivalent Method (FEM) instruments for measuring PM_{2.5} [i.e. a MetOne PM_{2.5} BAM monitor (model 1020) and a GRIMM PM monitor (model EDM180)]

<u>MetOne (2 units tested)</u>:

- Forward light scatter laser Nephelometer (non-FEM)
- \succ Measures PM_{2.5}
- ≻ Cost: ~\$1,900
- ≻ Time resolution: ~15-min

- ≻ Range: 0 to 100 mg/m³
- Wireless modem and GPS included

- MetOne BAM (reference method):
 Beta-attenuation monitor (FEM)
 Measures PM_{2.5}
 Cost: ~\$20,000
 Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 > Optical particle counter (FEM)
 > Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM_{1.0} from particle number measurements
 > Cost: ~\$25,000 and up
 - ≻Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected MetOne data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Good data recovery (91-96%)

MetOne; intra-model variability

• Substantial measurement variations were observed between the two MetOne units.

	MetOne; ave PM2.5 (ug/m3)	
	Unit #1 (T13669)	Unit #2 (T13670)
Min	2.70	0.00
Max	70.13	48.00
Average	15.01	9.72
Median	10.64	6.27
5%-ile	4.77	2.00
95 %-ile	41.57	29.70

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected FEM data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery: BAM (~90%) > GRIMM (~77%)

Equivalent methods: BAM vs GRIMM

· Good correlation between the two equivalent methods

Met One Sensor vs FEM GRIMM (1-hr ave.)

 The two neighborhood monitors seem to underestimate PM_{2.5} at low concentrations and to overestimate PM_{2.5} at high concentrations

Met One Sensor vs FEM GRIMM (24-hr ave.)

- Moderate correlation between Met One sensor measurements and the corresponding FEM GRIMM data (R²:53-54%)
- The two neighborhood monitors seem to underestimate PM_{2.5} at low concentrations and to overestimate PM_{2.5} at high concentrations

Met One Sensor vs FEM BAM (1-hr ave.)

- Moderate correlation between Met One sensor measurements and the corresponding FEM GRIMM data (R²:66-67%)
- The two neighborhood monitors seem to underestimate PM_{2.5} at low concentrations and to overestimate PM_{2.5} at high concentrations

Met One Sensor vs FEM BAM (24-hr ave.)

- Moderate correlation between Met One sensor measurements and the corresponding FEM GRIMM data (R²:65-66%)
- The two neighborhood monitors seem to underestimate PM_{2.5} at low concentrations and to overestimate PM_{2.5} at high concentrations

Discussion

- Overall, the two Met One Neighborhood Monitor units were reliable (i.e. no down time over a period of about six weeks) but were characterized by substantial intra-model variability
- Although the two sensor units tested in this project were able to reliably measure temporal variations in PM_{2.5} concentration, their data was only moderately correlated with the corresponding GRIMM (FEM) and BAM (FEM) data
- Laboratory chamber testing is necessary to fully characterize the performance of these monitors under known PM concentrations/size ranges and controlled conditions of temperature and relative humidity
- All results are still preliminary