Field Evaluation Oizom – Dustroid Pro V6

 From 12/24/2022 to 02/23/2023, three Oizom Dustroid Pro V6 (hereinafter Dustroid Pro) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants

Dustroid Pro (3 units tested):

- PM Sensors Optical (Wuhan Cubic PM3006S, non-FEM)
- Each unit measures: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³), T (°C), RH (%)
- ➤ Unit cost: \$6,000
- ➤ Time resolution: 1-min
- Units IDs: 0002, 0003, 0004

- South Coast AQMD Reference Instruments:
- GRIMM EDM 180 (hereinafter FEM GRIMM for PM_{2.5}, GRIMM otherwise):
 - > Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min
- Teledyne API T640 (*hereinafter FEM T640 for PM*_{2.5}, T640 otherwise):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ≻ Cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 0002, Unit 0003 and Unit 0004 was ~ 100% for all PM measurements

Dustroid Pro; intra-model variability

- Absolute intra-model variability was ~ 1.0, 1.3 and 3.3 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 20.8%, 19.7% and 23.0% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for $PM_{1.0}$ from GRIMM and T640 was ~ 100%.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements (R² > 0.97) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for $PM_{2.5}$ from FEM GRIMM and FEM T640 was ~ 100%.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements (R² > 0.95) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM_{10} from GRIMM and T640 was ~ 100%.
- Very strong correlations between the reference instruments for PM_{10} measurements (R² > 0.94) were observed.

Dustroid Pro vs GRIMM (PM_{1.0}; 5-min mean)

Dustroid Pro vs FEM GRIMM (PM_{2.5}; 5-min mean)

- The Dustroid Pro sensors showed strong correlations with the corresponding FEM GRIMM data (0.83 < R² < 0.85)
- Overall, the Dustroid Pro sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Dustroid Pro sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Dustroid Pro vs GRIMM (PM₁₀; 5-min mean)

- The Dustroid Pro sensors showed moderate correlations with the corresponding GRIMM data (0.57 < R² < 0.64)
- Overall, the Dustroid Pro sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Dustroid Pro sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

Dustroid Pro vs GRIMM (PM_{1.0}; 1-hr mean)

Dustroid Pro vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The Dustroid Pro sensors showed strong correlations with the corresponding FEM GRIMM data (0.84 < R² < 0.85)
- Overall, the Dustroid Pro sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Dustroid Pro sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Dustroid Pro vs GRIMM (PM₁₀; 1-hr mean)

- The Dustroid Pro sensors showed moderate correlations with the corresponding GRIMM data (0.58 < R² < 0.65)
- Overall, the Dustroid Pro sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Dustroid Pro sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

Dustroid Pro vs GRIMM (PM_{1.0}; 24-hr mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding GRIMM data (0.91 < R² < 0.93)
- Overall, the Dustroid Pro sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The Dustroid Pro sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

Dustroid Pro vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Unit 0003

Unit 0002

- The Dustroid Pro sensors showed very strong correlations with the corresponding FEM GRIMM data (0.91 < R² < 0.93)
- Overall, the Dustroid Pro sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Dustroid Pro sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

 $PM_{2.5}$ (24-hr mean, $\mu g/m^3$)

y = 1.6742x + 1.3688

 $R^2 = 0.9145$

10

0

20

Unit 0004

30

Dustroid Pro vs GRIMM (PM₁₀; 24-hr mean)

- The Dustroid Pro sensors showed moderate correlations with the corresponding GRIMM data (0.61 < R² < 0.67)
- Overall, the Dustroid Pro sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Dustroid Pro sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

15

Dustroid Pro vs T640 (PM_{1.0}; 5-min mean)

Dustroid Pro vs FEM T640 (PM_{2.5}; 5-min mean)

Dustroid Pro vs T640 (PM₁₀; 5-min mean)

- Dustroid Pro sensors showed moderate to strong correlations with the corresponding T640 data (0.65 < R² < 0.72)
- Overall, the Dustroid Pro sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Dustroid Pro sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

Dustroid Pro vs T640 (PM_{1.0}; 1-hr mean)

Dustroid Pro vs FEM T640 (PM_{2.5}; 1-hr mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding FEM T640 data $(0.91 < R^2 < 0.93)$
- Overall, the Dustroid Pro sensors underestimated the PM_{2.5} mass concentrations as measured by
- The Dustroid Pro sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Dustroid Pro vs T640 (PM₁₀; 1-hr mean)

Dustroid Pro vs T640 (PM_{1.0}; 24-hr mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding T640 data (0.93 < R² < 0.95)
- Overall, the Dustroid Pro sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Dustroid Pro sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

Dustroid Pro vs FEM T640 (PM_{2.5}; 24-hr mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding FEM T640 data $(0.94 < R^2 < 0.96)$
- Overall, the Dustroid Pro sensors underestimated the PM_{2.5} mass concentrations as measured by
- The Dustroid Pro sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

y = 1.58x + 1.3482

 $R^2 = 0.9465$

10

20

Unit 0004

0

0

 PM_{25} (24-hr mean, $\mu g/m^3$)

30

Dustroid Pro vs T640 (PM₁₀; 24-hr mean)

- The Dustroid Pro sensors showed moderate to strong correlations with the corresponding T640 data ($0.68 < R^2 < 0.72$)
- Overall, the Dustroid Pro sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Dustroid Pro sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

0

 PM_{10} (24-hr mean, $\mu g/m^3$)

y = 1.6975x + 7.4376

 $R^2 = 0.6816$

40

20

Unit 0004

60

	Average of 3 Sensors, PM _{1.0}		Dustroid Pro vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	4.8	4.7	0.82 to 0.88	1.06 to 1.65	0.7 to 1.2	-3.3 to -1.3	1.8 to 3.3	2.6 to 4.7	6.8 to 7.0	6.1 to 6.5	0.1 to 64.6
1-hr	4.8	4.6	0.83 to 0.90	1.07 to 1.66	0.7 to 1.1	-3.3 to -1.3	1.7 to 3.3	2.5 to 4.6	6.8 to 7.0	6.0 to 6.3	0.2 to 58.7
24-hr	4.8	3.0	0.92 to 0.94	1.13 to 1.69	0.5 to 0.9	-3.3 to -1.2	1.4 to 3.3	1.8 to 3.8	6.7 to 7.0	4.0 to 4.2	0.8 to 19.2
	Average of 3 Sensors, PM _{2.5}		Dustroid Pro vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	6.4	5.5	0.84 to 0.91	1.04 to 1.65	1.4 to 1.9	-4.8 to -2.0	2.2 to 4.8	2.9 to 6.3	9.2 to 9.7	6.9 to 7.5	0.3 to 82.2
1-hr	6.4	5.3	0.84 to 0.93	1.05 to 1.66	1.3 to 1.9	-4.8 to -2.0	2.1 to 4.8	2.8 to 6.2	9.2 to 9.7	6.7 to 7.3	0.4 to 74.6
24-hr	6.4	3.5	0.91 to 0.96	1.07 to 1.67	1.2 to 1.6	-4.7 to -2.0	2.0 to 4.7	2.2 to 5.2	9.2 to 9.6	4.3 to 4.8	2.3 to 22.2
	Average of 3 Sensors, PM ₁₀		Dustroid Pro vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	14.4	10.2	0.58 to 0.72	1.09 to 1.76	2.8 to 7.0	-14.9 to -4.3	6.8 to 14.9	10.8 to 18.4	21.3 to 25.6	16.0 to 16.2	0.3 to 206.3
1-hr	14.4	9.9	0.59 to 0.75	1.08 to 1.77	3.1 to 7.0	-14.9 to -4.3	6.7 to 14.9	10.2 to 18.0	21.3 to 25.6	15.2 to 15.3	0.5 to 125.4
24-hr	14.4	6.4	0.62 to 0.72	1.11 to 1.70	2.6 to 7.4	-14.9 to -4.4	5.9 to 14.9	7.5 to 16.2	21.2 to 25.6	9.9 to 10.4	3.7 to 49.2

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments. ³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Oizom Dustroid Pro vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.93 < R² < 0.98)
- Overall, the Dustroid Pro temperature measurements overestimated the corresponding South Coast AQMD Met Station data
- The Dustroid Pro sensors seemed to track the temperature diurnal variations as recorded by South Coast AQMD Met Station

Oizom Dustroid Pro vs South Coast AQMD Met Station (RH; 5-min mean)

- The Dustroid Pro sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Dustroid Pro RH measurements underestimated the corresponding South Coast AQMD Met Station data
- The Dustroid Pro sensors seemed to track the RH diurnal variations as recorded by South Coast AQMD Met Station

Discussion

- The three Dustroid Pro sensors' data recovery from Unit 0002, Unit 0003 and Unit 0004 was ~ 100% for all PM measurements
- The absolute intra-model variability was ~ 1.0, 1.3 and 3.3 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- PM_{1.0} mass concentrations measured by the Dustroid Pro sensors showed strong correlations with the corresponding GRIMM and T640 data (0.82 < R² < 0.90, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by the Dustroid Pro sensors showed strong to very strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.84 < R² < 0.93, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by the Dustroid Pro sensors showed moderate to strong correlations with the corresponding GRIMM and T640 data (0.58 < R² < 0.75; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary