Field Evaluation Plume Labs Flow 2

Background

 From 04/17/2020 to 06/25/2020¹, three Plume Labs Flow 2 (hereinafter Flow 2) multisensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants

2a:bf

- Flow 2 (3 units tested):
 - Gas Sensors: Heated Metal Oxide (non-FEM/non-FRM);
 - PM Sensors Laser Particle Counter (non-FEM)
 - Each unit reports: NO₂ (ppb), PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
 - Unit also measures: VOC (ppb)
 - ➤ Unit cost: \$199
 - Time resolution: 1-min
 - ²Units IDs: 2baf, 2b23, 2c18, 367b

¹Note: sensor data were not available between 6/2/2020 and 6/11/2020 due to preventive maintenance activities at the monitoring site

²Note: the internal fan in Unit 2b23 was not functioning, therefore, the PM data were invalidated. The replacement Unit 367b was deployed on 5/27/2020

- South Coast AQMD Reference instruments:
 - GRIMM (FEM PM_{2.5}); cost: \$25,000 and up
 Time resolution: 1-min
 - Teledyne API T640 (FEM PM): cost: \$
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - Time resolution: 1-min
 - NO_X instrument (FRM NO₂); cost: ~\$11,000
 - Time resolution: 1-min

Nitrogen Dioxide (NO₂) in Plume Labs Flow 2

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 2abf, Unit 2b23, Unit 2c18 and Unit 367b was ~ 71%, 55%, 66% and 49%, respectively, for NO₂ measurements.

Flow 2; Intra-model variability

- Absolute intra-model variability was ~ 1.4 ppb for NO₂ measurements. (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 8.6% for NO_2 measurements.

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Note: Intra-model variability was calculated using Unit 2abf, Unit 2b23 and Unit 2c18. Unit 367b was not included because it was a replacement unit and was deployed towards the end of the field evaluation.

Flow 2 vs FRM (NO₂; 5-min mean)

- The Flow 2 sensors showed no to very weak correlations with the corresponding FRM NO₂ data (0.03 < R² < 0.14)
- Overall, the Flow 2 sensors overestimated the NO₂ concentrations as measured by the FRM NO₂ instrument
- The Flow 2 sensors did not seem to track the diurnal NO₂ variations as recorded by the FRM NO₂ instrument

Note: FRM NO₂ (calculated as the difference between NO_x and NO) data were removed if the corresponding NO values were negative. 24-hr data were not shown due to the lack of data.

Flow 2 vs FRM (NO₂; 1-hr mean)

- The Flow 2 sensors showed no to very weak correlations with the corresponding FRM NO₂ data (0.06 < R^2 < 0.21)
- Overall, the Flow 2 sensors overestimated the NO₂ concentrations as measured by the FRM NO₂ instrument
- The Flow 2 sensors did not seem to track the diurnal NO₂ variations as recorded by the FRM NO₂ instrument

Note: FRM NO₂ (calculated as the difference between NO_x and NO) data were removed if the corresponding NO values were negative. 24-hr data were not shown due to the lack of data.

Particulate Matter (PM) in Plume Labs Flow 2

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 2abf, Unit 2c18 and Unit 367b was 71%, 66% and 49%, respectively, for PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration measurements.

Flow 2; Intra-model variability

- Absolute intra-model variability was ~ 0.001, 0.1 and 1.7 μg/m³ for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively. (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 0.1, 3.6 and 7.1% for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively. (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Note: Intra-model variability was calculated using Unit 2abf and Unit 2c18. Unit 367b was not included because it was a replacement unit and was deployed towards the end of the field evaluation.

Reference Instruments: PM_{2.5} FEM GRIMM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 is ~88% and 76%, respectively.
- Strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} measurements (R² ~ 0.77)

Reference Instruments: PM₁₀ GRIMM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM₁₀ from GRIMM and T640 is ~88% and 76%, respectively.
- Strong correlations between GRIMM and T640 for PM_{10} measurements ($R^2 \sim 0.85$)

Flow 2 vs GRIMM (PM_{1.0}; 5-min mean)

Flow 2 vs FEM GRIMM (PM_{2.5}; 5-min mean)

Flow 2 vs GRIMM (PM₁₀; 5-min mean)

Flow 2 vs GRIMM (PM_{1.0}; 1-hr mean)

Flow 2 vs FEM GRIMM (PM_{2.5}; 1-hr mean)

Flow 2 vs GRIMM (PM₁₀; 1-hr mean)

- The Flow 2 sensors did not correlate with the corresponding GRIMM data (R² < 0.09)
- Overall, the Flow 2 sensors underestimated the PM₁₀ mass concentrations as measured by the GRIMM
- The Flow 2 sensors did not seem to track the diurnal PM₁₀ variations as recorded by the GRIMM

Note: PM data from Unit 2b23 were invalidated because its internal fan was not functioning.

Flow 2 vs GRIMM (PM_{1.0}; 24-hr mean)

Flow 2 vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Unit 2c18

Unit 2abf

- The Flow 2 sensors showed very weak to moderate correlations with the corresponding FEM GRIMM data (0.12 < R² < 0.51)
- Overall, the Flow 2 sensors underestimated the PM_{2.5} mass concentrations as measured by the FEM GRIMM
- The Flow 2 sensors did not seem to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

Note: PM data from Unit 2b23 were invalidated because its internal fan was not functioning.

 PM_{25} (24-hr mean, $\mu g/m^3$)

10

0

y = 2.0191x + 3.6097

 $R^2 = 0.121$

20

Unit 367b

Flow 2 vs GRIMM (PM₁₀; 24-hr mean)

- The Flow 2 sensors showed no to weak correlations with the corresponding GRIMM data (0.003 < R² < 0.33)
- Overall, the Flow 2 sensors underestimated the PM₁₀ mass concentrations as measured by the GRIMM
- The Flow 2 sensors did not seem to track the diurnal PM₁₀ variations as recorded by the GRIMM

Note: PM data from Unit 2b23 were invalidated because its internal fan was not functioning.

Flow 2 vs FEM T640 (PM_{2.5}; 5-min mean)

Flow 2 vs T640 (PM₁₀; 5-min mean)

- The Flow 2 sensors did not correlate with the corresponding T640 data (R² < 0.03)
- Overall, the Flow 2 sensors underestimated the PM₁₀ mass concentrations as measured by the T640
- The Flow 2 sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

Note: PM data from Unit 2b23 were invalidated because its internal fan was not functioning.

Flow 2 vs FEM T640 (PM_{2.5}; 1-hr mean)

Flow 2 vs T640 (PM₁₀; 1-hr mean)

Flow 2 vs FEM T640 (PM_{2.5}; 24-hr mean)

Flow 2 vs T640 (PM_{10} ; 24-hr mean)

Discussion

- The Flow 2 sensors' data recovery Unit 2abf, Unit 2b23, Unit 2c18 and Unit 367b was ~ 71%, 55%, 66% and 49%, respectively, for NO₂ measurements. Data recovery from Unit 2abf, Unit 2c18 and Unit 367b was 71%, 66% and 49%, respectively, for PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration measurements.
- The absolute intra-model variability was ~ 1.4 ppb for NO₂ measurements and ~ 0.001, 0.1 and 1.7 μg/m³ for the PM_{1.0}, PM_{2.5} and PM₁₀ measurements, respectively.
- NO₂ concentrations measured by the Flow 2 sensors showed no to very weak correlations with the corresponding FRM NO₂ data (0.03 < R² < 0.14, 5-min mean). The sensors overestimated the NO₂ concentrations as measured by the FRM NO₂ instrument.
- The reference instruments (GRIMM and T640) show strong correlations with each other for PM_{2.5} mass concentration measurements (R² ~ 0.77, 1-hr mean) and PM₁₀ mass concentration measurements (R² ~ 0.85, 1-hr mean).
- PM_{1.0} mass concentrations measured by the Flow 2 sensors showed no to very weak correlations with the corresponding GRIMM data (0.03 < R² < 0.19, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM.
- PM_{2.5} mass concentrations measured by the Flow 2 sensor showed no to very weak correlations with the corresponding FEM GRIMM and FEM T640 data (0.02 < R² < 0.22, 0.02 < R² < 0.15, respectively; 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640.
- PM₁₀ mass concentrations measured by the Flow 2 sensors did not correlate with the GRIMM and T640 data (R² < 0.09 and < 0.07, respectively; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations measured by GRIMM and T640.
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.