Field Evaluation Purple Air PM Sensor

Background

- From 02/19/2016 to 04/19/2016, three Purple Air PM Sensors were deployed at our (SCAQMD) Rubidoux station and ran side-by-side with two Federal Equivalent Method (FEM) instruments measuring the same pollutant
- Purple Air Sensor (3 units tested):

Particle sensors (optical; non-FEM)
 Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration (µg/m³)

➤Unit cost: ~\$150

Time resolution: 20-secUnits IDs: 22d0, 2336, b610

- MetOne BAM (reference method):
 - ➢Beta-attenuation monitors (FEM)
 - Measures PM_{2.5} & PM₁₀ mass (µg/m³)
 Unit cost: ~\$20,000
 - ➤Time resolution: 1-hr
 - <u>GRIMM (reference method)</u>:
 - ➢Optical particle counter (FEM)
 - ➤Uses proprietary algorithms to calculate total PM_{1.0}, PM_{2.5}, and PM₁₀ mass from particle number measurements
 - ➤Unit Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} from all three Purple Air Sensors was 99.9%

Purple Air sensors; intra-model variability

 Very low measurement variations were observed between the three Purple Air devices for PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations (μg/m³)

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected FEM data (i.e. obvious outliers, negative values and invalid data-points were eliminated from data-set)
- $\rm PM_{2.5}$ & $\rm PM_{10}$ data recovery was 100 % for the GRIMM and 87 % for the BAM

Equivalent methods: BAM vs GRIMM

FEM BAM

Good correlation between the two equivalent methods for PM_{2.5} & PM₁₀

Purple Air Sensor vs FEM GRIMM (PM_{1.0} Mass; 5-min mean)

- Purple Air PM_{1.0} mass measurements correlate well with the corresponding FEM GRIMM data (R² > 0.93)
- The three sensor units tracked the diurnal PM variations recorded by the FEM GRIMM instrument well
- Measurements from all three Purple Air devices are quite accurate when compared to the corresponding FEM data

J

Purple Air Sensor vs FEM GRIMM (PM_{2.5} Mass; 5-min mean)

- Purple Air PM_{2.5} mass measurements correlate well with the corresponding FEM GRIMM data (R² > 0.90)
- The three sensor units track the diurnal PM variations recorded by the FEM GRIMM instrument well

Purple Air Sensor vs FEM GRIMM (PM₁₀ Mass; 5-min mean)

- Purple Air PM₁₀ mass measurements show a modest correlation with the corresponding FEM GRIMM data (R² < 0.41)
- The three sensor units do not always track the diurnal variations recorded by the FEM GRIMM instrument
- Purple Air PM₁₀ measurements are underestimated with respect to the corresponding FEM GRIMM data

Purple Air Sensor vs FEM GRIMM (PM_{1.0} Mass; 1-hr mean)

Purple Air Sensor vs FEM GRIMM (PM_{2.5}; 1-hr mean)

Purple Air Sensor vs FEM GRIMM (PM₁₀; 1-hr mean)

Purple Air Sensor vs FEM GRIMM (PM_{1.0} Mass; 24-hr mean)

Purple Air Sensor vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Purple Air Sensor vs FEM GRIMM (PM₁₀; 24-hr mean)

Purple Air Sensor vs FEM BAM (PM_{2.5}; 1-hr mean)

60

0

0

0

0

20

Unit 22d0

40

- Purple Air PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.77)
- The three sensor units tracked the diurnal PM variations recorded by the FEM BAM instrument well
- Measurements from all three Purple Air devices are quite accurate when compared to the corresponding FEM BAM data

60

40

20

Unit 2336

Purple Air Sensor vs FEM BAM (PM_{2.5}; 24-hr mean)

- Purple Air PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.90)
- The three sensor units tracked the diurnal PM variations recorded by the FEM BAM instrument well
- Measurements from all three Purple Air devices are quite accurate when compared to the corresponding FEM BAM data

Purple Air Sensor vs FEM BAM (PM₁₀; 1-hr mean)

- Purple Air PM₁₀ mass measurements show a low correlation with the corresponding FEM BAM data (R² < 0.35)
- The three sensor units do not always track the diurnal variations recorded by the FEM BAM instrument
- Purple Air PM₁₀ measurements are underestimated with respect to the corresponding FEM BAM data

Purple Air Sensor vs FEM BAM (PM₁₀; 24-hr mean)

- Purple Air PM₁₀ mass measurements show a modest correlation with the corresponding FEM BAM data (R² < 0.49)
- The three sensor units do not always track the diurnal variations recorded by the FEM BAM instrument
- Purple Air PM₁₀ measurements are underestimated with respect to the corresponding FEM BAM data

Discussion

- Overall, the three **Purple Air PM Sensors** were very reliable (data recovery was close to 100% for all units tested) and characterized by very low intra-model variability
- Purple Air sensor PM_{1.0} and PM_{2.5} data was highly correlated (R² > 0.90) to the corresponding measurements collected using a substantially more expensive FEM instrument (GRIMM). However, the sensor vs GRIMM correlation for PM₁₀ was only modest (R² < 0.45)
- Similarly, the Purple Air sensor PM_{2.5} data was very well correlated (R² > 0.78) to the corresponding measurements collected using an FEM BAM. Also in this case the sensor vs BAM correlation for PM₁₀ was only modest (R² < 0.34)
- Although no sensor calibration was performed by SCAQMD Staff prior to the beginning of this test, the $PM_{1.0}$ and $PM_{2.5}$ data collected by all three sensor units were quite accurate
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions
- All results are still preliminary