Field Evaluation PurpleAir PA-II-FLEX

Background

• From 03/17/2022 to 05/24/2022, three **PurpleAir PA-II-FLEX (hereinafter PA-II-FLEX)** sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants

PA-II-FLEX (3 units tested):

- Particle sensor: optical; non-FEM (dual Plantower PMS6003)
- \succ Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
- Also measures: internal temperature (°F) and internal relative humidity (%)
- ≻ Unit cost: \$299
- ➤ Time resolution: 1-min
- Units IDs: Unit #1 (7fd9, 7fd9-b); Unit #2 (7f6d, 7f6d-b); Unit #3 (2bf1, 2bf1-b)

Note: each unit has two PM sensors and reports two PM values (Channel A and Channel B. Sensors are named Unit ID and Unit ID-b for Channel A and Channel B values, respectively.)

South Coast AQMD Reference Instruments:

- GRIMM EDM 180 (hereinafter FEM GRIMM for PM_{2.5}, GRIMM otherwise):
 - > Optical particle counter (FEM $PM_{2.5}$)
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➤ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- Teledyne API T640 (hereinafter FEM T640 for PM_{2.5}, T640 otherwise):
 - \rightarrow Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Unit cost: ~\$21,000
 - ➤ Time resolution: 1-min
 - Met Station (T, RH, P, WS, WD)
 - ➤ Unit cost: ~\$5,000
 - ➤ Time resolution: 1-min

FEM T640

FEM GRIMM

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~94% for all PM measurements

PA-II-FLEX; intra-model variability

- Absolute intra-model variability was ~0.18, ~0.38 and ~1.64 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~2.3%, ~3.0% and ~8.9% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for PM_{1.0} from GRIMM and T640 was ~98% and ~93%, respectively.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements (R² ~0.95) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~ 98% and ~ 93%, respectively.
- Very strong correlations between the reference instruments for PM_{2.5} measurements (R² ~0.95) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM_{10} from GRIMM and T640 was ~ 98% and ~ 93%, respectively.
- Very strong correlations between the reference instruments for PM_{10} measurements (R² ~0.91) were observed.

PA-II-FLEX vs GRIMM (PM_{1.0}; 5-min mean)

• The PA-II-FLEX sensors showed very strong correlations with the corresponding GRIMM data (0.90 < R² < 0.92)

PA-II-FLEX vs GRIMM (PM_{1.0}; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 5-min mean)

The PA-II-FLEX sensors showed strong correlations with the corresponding FEM GRIMM data (0.77 < R² < 0.81)

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

PA-II-FLEX vs GRIMM (PM₁₀; 5-min mean)

• The PA-II-FLEX sensors showed very weak correlations with the corresponding GRIMM data (0.21 < R² < 0.25)

PA-II-FLEX vs GRIMM (PM₁₀; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

• The PA-II-FLEX sensors showed very strong correlations with the corresponding GRIMM data (0.90 < R² < 0.93)

PA-II-FLEX vs GRIMM (PM_{1.0}; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 1-hr mean)

• The PA-II-FLEX sensors showed strong correlations with the corresponding FEM GRIMM data (0.78 < R² < 0.82)

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

PA-II-FLEX vs GRIMM (PM₁₀; 1-hr mean)

• The PA-II-FLEX sensors showed very weak correlations with the corresponding GRIMM data (0.22 < R² < 0.26)

PA-II-FLEX vs GRIMM (PM₁₀; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

PA-II-FLEX vs GRIMM (PM_{1.0}; 24-hr mean)

The PA-II-FLEX sensors showed very strong correlations with the corresponding GRIMM data (0.92 < R² < 0.94)

PA-II-FLEX vs GRIMM (PM_{1.0}; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{1.0} daily variations as recorded by GRIMM

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 24-hr mean)

• The PA-II-FLEX sensors showed strong correlations with the corresponding FEM GRIMM data (0.81 < R² < 0.84)

PA-II-FLEX vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The PA-II-FLEX sensors seemed to track the PM_{2.5} daily variations as recorded by FEM GRIMM

PA-II-FLEX vs GRIMM (PM₁₀; 24-hr mean)

• The PA-II-FLEX sensors showed very weak correlations with the corresponding GRIMM data (0.19 < R² < 0.23)

PA-II-FLEX vs GRIMM (PM₁₀; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ daily variations as recorded by GRIMM

PA-II-FLEX vs T640 (PM_{1.0}; 5-min mean)

• The PA-II-FLEX sensors showed very strong correlations with the corresponding T640 data (0.92 < R² < 0.94)

PA-II-FLEX vs T640 (PM_{1.0}; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The PA-II-FLEX sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

PA-II-FLEX vs FEM T640 (PM_{2.5}; 5-min mean)

The PA-II-FLEX sensors showed strong correlations with the corresponding FEM T640 data (0.86 < R² < 0.89)

PA-II-FLEX vs FEM T640 (PM_{2.5}; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The PA-II-FLEX sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

PA-II-FLEX vs T640 (PM₁₀; 5-min mean)

• PA-II-FLEX sensors showed weak correlations with the corresponding T640 data (0.35 < R² < 0.39)

PA-II-FLEX vs T640 (PM₁₀; 5-min mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by T640

PA-II-FLEX vs T640 (PM_{1.0}; 1-hr mean)

• The PA-II-FLEX sensors showed very strong correlations with the corresponding T640 data (0.93 < R² < 0.95)

PA-II-FLEX vs T640 (PM_{1.0}; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The PA-II-FLEX sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

PA-II-FLEX vs FEM T640 (PM_{2.5}; 1-hr mean)

The PA-II-FLEX sensors showed strong correlations with the corresponding FEM T640 data (0.87 < R² < 0.90)

PA-II-FLEX vs FEM T640 (PM_{2.5}; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The PA-II-FLEX sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

PA-II-FLEX vs T640 (PM₁₀; 1-hr mean)

• The PA-II-FLEX sensors showed weak correlations with the corresponding T640 data (0.38 < R² < 0.43)

PA-II-FLEX vs T640 (PM₁₀; 1-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by T640

PA-II-FLEX vs T640 (PM_{1.0}; 24-hr mean)

• The PA-II-FLEX sensors showed very strong correlations with the corresponding T640 data (0.95 < R² < 0.97)

PA-II-FLEX vs T640 (PM_{1.0}; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The PA-II-FLEX sensors seemed to track the PM_{1.0} daily variations as recorded by T640

PA-II-FLEX vs FEM T640 (PM_{2.5}; 24-hr mean)

The PA-II-FLEX sensors showed strong to very strong correlations with the corresponding FEM T640 data (0.88 < R² < 0.91)

PA-II-FLEX vs FEM T640 (PM_{2.5}; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The PA-II-FLEX sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

PA-II-FLEX vs T640 (PM₁₀; 24-hr mean)

• The PA-II-FLEX sensors showed weak to moderate correlations with the corresponding T640 data (0.47 < R² < 0.51)

PA-II-FLEX vs T640 (PM₁₀; 24-hr mean)

- Overall, the PA-II-FLEX sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The PA-II-FLEX sensors sometimes seemed to track the PM₁₀ daily variations as recorded by T640

Summary: Channel A

	Average of 3 Sensors, PM _{1.0}			PA-II-F	LEX vs GRIM	GRIMM & T640 (PM _{1.0} , μg/m ³)					
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.8	6.4	0.91 to 0.94	0.74 to 0.81	1.5 to 3.2	-1.7 to 0.1	1.4 to 2.2	1.9 to 2.5	7.8 to 9.8	5.7	0.3 to 38.4
1-hr	7.8	6.4	0.91 to 0.95	0.74 to 0.82	1.5 to 3.2	-1.7 to 0.1	1.4 to 2.1	1.8 to 2.4	7.8 to 9.8	5.7	0.4 to 37.9
24-hr	7.8	5.1	0.92 to 0.96	0.71 to 0.84	1.6 to 3.1	-1.6 to 0.1	1.1 to 1.7	1.4 to 2.0	7.9 to 9.8	4.6 to 4.7	2.5 to 20.3
	Average of 3 Sensors, PM _{2.5}		PA-II-FLEX vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , µg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	13.0	10.3	0.78 to 0.87	0.62 to 0.67	4.6 to 5.6	-1.1 to -0.3	3.5 to 3.8	4.4 to 5.0	13.0 to 14.4	7.4 to 7.5	1.2 to 48.9
1-hr	13.0	10.2	0.79 to 0.88	0.63 to 0.67	4.6 to 5.6	-1.1 to -0.3	3.5 to 3.7	4.2 to 4.9	13.0 to 14.4	7.3 to 7.4	1.5 to 47.9
24-hr	13.1	8.1	0.81 to 0.90	0.60 to 0.69	5.0 to 5.3	-1.1 to -0.3	2.7 to 3.1	3.2 to 3.9	13.1 to 14.4	5.7 to 6.0	5.5 to 26.7
	Average of 3 Sensors, PM ₁₀			PA-II-F	LEX vs GRIM	GRIMM & T640 (PM ₁₀ , μg/m ³)					
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	19.0	14.6	0.21 to 0.38	0.63 to 0.82	19.1 to 25.9	-22.8 to -12.7	15.3 to 23.1	21.8 to 27.6	30.7 to 40.5	18.5 to 19.1	1.7 to 268.7
1-hr	19.0	14.4	0.22 to 0.42	0.62 to 0.82	19.2 to 25.9	-22.8 to -12.8	15.1 to 23.1	21.0 to 27.0	30.7 to 40.5	17.6 to 18.1	2.3 to 150.8
24-hr	19.2	11.5	0.20 to 0.50	0.49 to 0.80	21.4 to 26.2	-22.7 to -12.5	13.4 to 22.7	17.6 to 24.6	30.7 to 40.5	11.7 to 12.4	8.9 to 62.8

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Summary: Channel B

	Average of 3 Sensors, PM _{1.0}			PA-II-F	LEX vs GRIM	GRIMM & T640 (PM _{1.0} , μg/m ³)					
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.7	6.4	0.91 to 0.94	0.77 to 0.79	1.5 to 3.2	-1.6 to 0.1	1.5 to 2.1	2.0 to 2.5	7.8 to 9.8	5.7	0.3 to 38.4
1-hr	7.7	6.3	0.91 to 0.94	0.77 to 0.80	1.5 to 3.1	-1.6 to 0.1	1.5 to 2.1	1.9 to 2.4	7.8 to 9.8	5.7	0.4 to 37.9
24-hr	7.8	5.0	0.92 to 0.96	0.75 to 0.82	1.6 to 3.0	-1.6 to 0.1	1.2 to 1.7	1.5 to 2.0	7.9 to 9.8	4.6 to 4.7	2.5 to 20.3
	Average of 3 Sensors, PM _{2.5}		PA-II-FLEX vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , µg/m ³)		
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	12.7	10.1	0.79 to 0.88	0.64 to 0.67	4.4 to 5.7	-1.5 to -0.7	3.4 to 3.8	4.2 to 4.8	13.0 to 14.4	7.4 to 7.5	1.2 to 48.9
1-hr	12.7	9.9	0.80 to 0.89	0.64 to 0.67	4.4 to 5.7	-1.5 to -0.7	3.3 to 3.7	4.1 to 4.7	13.0 to 14.4	7.3 to 7.4	1.5 to 47.9
24-hr	12.9	7.9	0.82 to 0.91	0.62 to 0.69	4.7 to 5.4	-1.5 to -0.6	2.6 to 3.2	3.4 to 3.8	13.1 to 14.4	5.7 to 6.0	5.5 to 26.7
	Average of 3 Sensors, PM ₁₀			PA-II-F	LEX vs GRIM	GRIMM & T640 (PM ₁₀ , μg/m ³)					
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	18.1	13.8	0.22 to 0.39	0.67 to 0.91	18.8 to 25.9	-24.6 to -13.3	15.4 to 24.8	21.8 to 29.0	30.7 to 40.5	18.5 to 19.1	1.7 to 268.7
1-hr	18.1	13.6	0.23 to 0.42	0.66 to 0.91	18.9 to 25.9	-24.6 to -13.3	15.2 to 24.8	21.1 to 28.4	30.7 to 40.5	17.6 to 18.1	2.3 to 150.8
24-hr	18.2	10.8	0.20 to 0.50	0.53 to 0.89	21.2 to 26.3	-24.6 to -13.0	13.7 to 24.6	17.7 to 26.2	30.7 to 40.5	11.7 to 12.4	8.9 to 62.8

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

PurpleAir PA-II-FLEX vs South Coast AQMD Met Station (Temp; 5-min mean)

- The PA-II-FLEX sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~0.94)
- Overall, the PA-II-FLEX sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The PA-II-FLEX sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

45

PurpleAir PA-II-FLEX vs South Coast AQMD Met Station (RH; 5-min mean)

- The PA-II-FLEX sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~0.97)
- Overall, the PA-II-FLEX sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The PA-II-FLEX sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

46

Discussion

- The three **PA-II-FLEX** sensors' data recovery from all units was ~94% for all PM measurements
- The absolute intra-model variability for PM_{1.0}, PM_{2.5} and PM₁₀ was ~0.18, ~0.38 and ~1.64 μg/m³, respectively
- Reference instruments: Very strong correlations between GRIMM and T640 for PM_{1.0}, PM_{2.5}, and PM₁₀ (R² ~0.95, R² ~0.95, and R² ~0.91, respectively, 1-hr mean)
- PM_{1.0} mass concentrations measured by PA-II-FLEX sensors showed very strong correlations with the corresponding GRIMM and T640 data (0.90 < R² < 0.95, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by PA-II-FLEX sensors showed strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.78 < R² < 0.90, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by PA-II-FLEX sensors showed very weak to weak correlations with the corresponding GRIMM and T640 (0.22 < R² < 0.43; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary