Field Evaluation RTI MicroPEM PM_{2.5} Sensor

Background

- From 02/10/2015 to 04/14/2015, three RTI MicroPEM particle sensors were deployed at one of our monitoring stations in Rubidoux, CA, and run side-by-side with two Federal Equivalent Method (FEM) instruments measuring the same pollutant
- <u>RTI MicroPEM (3 units tested)</u>:
 - Particulate Matter sensors (optical; non-FEM)*
 - Each unit measures: PM_{2.5} (µg/m³) Unit cost: ~\$2,000
 - ≻Time resolution: 10sec
 - ≻Units IDs: 60N, 65N, 72N

*The MicroPEM also allows for the collection of integrated PM2.5 samples on a 25mm Teflon filter

- MetOne BAM (reference method):
 - Beta-attenuation monitor (FEM)
 - Measures PM_{2.5}
 - ≻Cost: ~\$20,000
 - ➤Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 > Optical particle counter (FEM)
 > Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ from particle number measurements
 - Cost: ~\$25,000 and up
 Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for $\mathrm{PM}_{2.5}$ from units 60N and 72N was close to 80%
- Unit 65N experienced date/time reprogramming issues and data recovery was close to 30%

RTI MicroPEM; intra-model variability

Low measurement variability was observed between the three RTI microPEM units

RTI MicroPEM vs GRIMM (FEM) (PM_{2.5}; 5-min mean)

RTI MicroPEM vs GRIMM (FEM) (PM_{2.5}; 1-hr mean)

Measurements from all three RTI MicroPEM sensors are well correlated with the corresponding GRIMM (FEM) data (R²>0.81)

RTI MicroPEM vs GRIMM (FEM) (PM_{2.5}; 24-hr mean)

- PM_{2.5} measurements from units 60N and 72N correlate well with the corresponding GRIMM (FEM) data (R²>0.84)
- Data recovery for unit 65N was low. This is reflected in the moderate measurement correlation with the corresponding GRIMM monitor data (R²=0.73)

RTI MicroPEM vs BAM (FEM) (PM_{2.5}; 1-hr mean)

40

60

80

100

- Measurements from units 60N and 72N ٠ show good correlation with the corresponding BAM (FEM) data $(R^2 > 0.78)$
- Data recovery for unit 65N was low. This is reflected in the moderate measurement correlation with the corresponding BAM monitor data $(R^2=0.67)$

RTI MicroPEM vs BAM (FEM) (PM_{2.5}; 24-hr mean)

- Measurements from units 60N and 72N show good correlation with the corresponding BAM (FEM) data (R²>0.90)
- Data recovery for unit 65N was low. This is reflected in the moderate measurement correlation with the corresponding BAM monitor data (R²=0.77)

Discussion

- > Overall, the three RTI MicroPEM sensors performed well and showed:
 - Minimal down time over a period of about two months (except for the 65N unit that experienced date/time reprogramming issues)
 - Low intra-model variability
 - Moderate-to-good correlation with substantially more expensive instruments (GRIMM and BAM: EPA-designated, FEM Method)
- MicroPEM PM_{2.5} data was usually overestimated, especially at high ambient PM concentrations. However, no sensor calibration was performed prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions
- It should be noted that the microPEM can also be used to collect integrated PM samples using a Teflon filter

These are preliminary results