Field Evaluation Sensirion SPS30 Evaluation Kit

Background

- From 03/07/2019 to 05/14/2019, three Sensirion SPS30 Evaluation Kits (hereinafter Sensirion SPS30) were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with three reference instruments measuring the same pollutants
- <u>Sensirion SPS30 (3 units tested)</u>:
 - Particle sensor: (optical; non-FEM)
 - ➤ PM sensor: Sensirion SPS30
 - > Each unit reports: $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - > Also measures $PM_{4.0}$ (µg/m³)
 - ➤ Unit cost: \$100
 - ➤ Time resolution: 1 second
 - ➤ Units IDs: 7CE8, D038, 5455

- MetOne BAM (reference instrument):
 - Beta-attenuation monitor (FEM PM_{2.5} & PM₁₀)
 - \succ Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$20,000
 - Time resolution: 1-hr
- <u>GRIMM (reference instrument)</u>:
 - > Optical particle counter (FEM $PM_{2.5}$)
 - Measures PM_{1.0}, PM_{2.5}, and PM₁₀ (µg/m³)
 - ➤ Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - ➢ Optical particle counter (FEM PM_{2.5})
 - \blacktriangleright Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$21,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from units 7CE8, D038, 5455 was ~100% for all PM measurements

Sensirion SPS30; intra-model variability

 Very low measurement variability (~ 1%, 1.3% and 2.4%) was observed between the three Sensirion SPS30 units for PM_{1.0}, PM_{2.5} and PM₁₀ mass conc. measurements, respectively

Reference Instruments: PM_{2.5} GRIMM, BAM & T640

- Data recovery for PM_{2.5} from FEM GRIMM, FEM BAM and FEM T640 was 99.4 %, 94.5 % and 99.8%, respectively.
- Moderate to strong correlations between the three reference instruments for PM_{2.5} measurements (0.69 < R² < 0.84) were observed.

Reference Instruments: PM₁₀ GRIMM, BAM & T640

- Data recovery for PM₁₀ from GRIMM, FEM BAM and T640 was 99.4 %, 98.8 % and 99.8 %, respectively.
- strong correlations between the three reference instruments for PM_{10} measurements (0.73 < R^2 < 0.89) were observed

Sensirion SPS30 vs GRIMM (PM_{1.0}; 5-min mean)

- Sensirion SPS30 sensors showed very strong correlations with the corresponding GRIMM data (R² ~ 0.91)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{1.0} diurnal variations as recorded by GRIMM

Sensirion SPS30 vs FEM GRIMM (PM_{2.5}; 5-min mean)

- Sensirion SPS30 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.80)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{2.5} mass concentrations when PM_{2.5} > ~10 µg/m³ as measured by FEM GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{2.5} diurnal variations as recorded by FEM GRIMM

20

40

 PM_{25} (5-min mean, $\mu g/m^3$)

y = 0.6724x + 2.7445

 $R^2 = 0.8001$

60

Unit 5455

80

Sensirion SPS30 vs GRIMM (PM₁₀; 5-min mean)

Sensirion SPS30 vs GRIMM (PM_{1.0}; 1-hr mean)

- Sensirion SPS30 sensors showed very strong correlations with the corresponding GRIMM data (R² ~ 0.92)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{1.0} diurnal variations as recorded by GRIMM

Sensirion SPS30 vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- Sensirion SPS30 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.83)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{2.5} mass concentrations when PM_{2.5} > ~10 µg/m³ as measured by FEM GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{2.5} diurnal variations as recorded by FEM GRIMM

 PM_{25} (1-hr mean, $\mu g/m^3$)

y = 0.6727x + 2.7533

 $R^2 = 0.8301$

20

0

40

60

Unit 5455

80

Sensirion SPS30 vs GRIMM (PM₁₀; 1-hr mean)

- Sensirion SPS30 sensors showed very weak correlations with the corresponding GRIMM data (R² ~ 0.12)
- Overall, the Sensirion SPS30 sensors underestimated the PM₁₀ mass concentrations measured by GRIMM
- The Sensirion SPS30 sensors seemed to moderately track the PM₁₀ diurnal variations as recorded by GRIMM

Sensirion SPS30 vs GRIMM (PM_{1.0}; 24-hr mean)

- Sensirion SPS30 sensors showed very strong correlations with the corresponding GRIMM data (R² ~ 0.94)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{1.0} diurnal variations as recorded by GRIMM

Sensirion SPS30 vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Unit D038

Unit 7CE8

- Sensirion SPS30 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.86)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{2.5} mass concentrations when PM_{2.5} > ~10 µg/m³ as measured by FEM GRIMM
- The Sensirion SPS30 sensors seemed to track well the PM_{2.5} diurnal variations as recorded by FEM GRIMM

 PM_{25} (24-hr mean, $\mu g/m^3$)

y = 0.7098x + 2.5372

 $R^2 = 0.8542$

10

0

20

Unit 5455

Sensirion SPS30 vs GRIMM (PM₁₀; 24-hr mean)

- Sensirion SPS30 sensors showed very weak correlations with the corresponding GRIMM data (R²~0.11)
- Overall, the Sensirion SPS30 sensors underestimated the PM₁₀ mass concentrations measured by GRIMM
- The Sensirion SPS30 sensors seemed to moderately track the PM₁₀ diurnal variations as recorded by GRIMM

Sensirion SPS30 vs FEM BAM (PM_{2.5}; 1-hr mean)

Sensirion SPS30 vs FEM BAM (PM₁₀; 1-hr mean)

Sensirion SPS30 vs FEM BAM (PM_{2.5}; 24-hr mean)

- Sensirion SPS30 sensors showed moderate correlations with the corresponding FEM BAM data (R² ~ 0.68)
- Overall, the Sensirion SPS30 sensors overestimated the PM_{2.5} mass concentrations when PM_{2.5} > ~15 µg/m³ as measured by FEM BAM
- The Sensirion SPS30 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM

 PM_{25} (24-hr mean, $\mu g/m^3$)

v = 0.7736x + 3.4166

 $R^2 = 0.6876$

10

O

20

Unit 5455

Sensirion SPS30 vs FEM BAM (PM₁₀; 24-hr mean)

- Sensirion SPS30 sensors showed very weak correlations with the corresponding FEM BAM data (R² ~ 0.19)
- Overall, the Sensirion SPS30 sensors underestimated the PM₁₀ mass concentrations measured by FEM BAM
- The Sensirion SPS30 sensors seemed to moderately track the PM₁₀ diurnal variations as recorded by FEM BAM

Sensirion SPS30 vs FEM T640 (PM_{2.5}; 5-min mean)

- Sensirion SPS30 sensors showed strong correlations with the corresponding FEM T640 data (R² ~ 0.82)
- Overall, the Sensirion SPS30 sensors underestimated the PM_{2.5} mass concentrations measured by FEM T640
- The Sensirion SPS30 sensors seemed to track well the PM_{2.5} diurnal variations as recorded by FEM T640

Sensirion SPS30 vs T640 (PM₁₀; 5-min mean)

Sensirion SPS30 vs FEM T640 (PM_{2.5}; 1-hr mean)

Sensirion SPS30 vs T640 (PM₁₀; 1-hr mean)

Sensirion SPS30 vs FEM T640 (PM_{2.5}; 24-hr mean)

Sensirion SPS30 vs T640 (PM₁₀; 24-hr mean)

Unit D038

Unit 7CE8

Unit 5455

Discussion

- The three **Sensirion SPS30** sensors' data recovery from all units was ~ 100% for all PM measurements
- The three sensors showed very low intra-model variability (~ 1%, 1.3 and 2.4% for PM_{1.0}, PM_{2.5} and PM₁₀ mass conc. measurements, respectively)
- The reference instruments (GRIMM, BAM and T640) showed strong correlations with each other for both PM_{2.5} (R² ~ 0.78) and PM₁₀ (R² ~ 0.79) mass concentration measurements (1-hr mean)
- PM_{1.0} mass concentration measurements measured by Sensirion SPS30 sensors showed very strong correlations with the corresponding GRIMM data (R² ~ 0.91, 1-hr mean) and overestimated PM_{1.0} mass concentrations measured by GRIMM
- PM_{2.5} mass concentration measurements measured by Sensirion SPS30 sensors showed moderate to strong correlations with the corresponding FEM GRIMM, FEM BAM and FEM T640 data (R² ~ 0.83, 0.64 and 0.84, respectively, 1-hr mean). The sensors overestimated PM_{2.5} mass concentrations measured by FEM GRIMM and FEM BAM and underestimated PM_{2.5} mass concentrations measured by FEM T640
- PM₁₀ mass concentration measurements measured by Sensirion SPS30 sensors showed very weak correlations with the corresponding GRIMM, FEM BAM and T640 data (R² ~ 0.12, 0.11 and 0.25, respectively; 1-hr mean) and underestimated PM₁₀ mass concentrations measured by GRIMM, FEM BAM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- <u>All results are still preliminary</u>