Field Evaluation TSI BlueSky

Background

- From 04/08/2020 to 06/15/2020, three TSI BlueSky sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- TSI BlueSky (3 units tested):
 - Particle sensor: optical; non-FEM (SPS30, Sensirion)
 - Each unit reports: PM_{2.5} and PM₁₀ (µg/m³), Temperature and Relative Humidity
 - ➤ Unit cost: \$400
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: Unit 8031, Unit 8027 and Unit 8037

- <u>GRIMM (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➤ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met station (T, RH, P, WS, WD):
 - ➤ Unit cost: ~\$5,000
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 8031, Unit 8027 and Unit 8037 was ~ 87%, 97% and 80%, respectively, for both PM_{2.5} and PM₁₀ measurements

TSI BlueSky; intra-model variability

- Absolute intra-model variability was ~ 0.58 and 0.63 μ g/m³ for PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 10.5% and 11 % for PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} measurements from FEM GRIMM and FEM T640 was ~ 88% and 76%, respectively.
- Strong correlations between the reference instruments for $PM_{2.5}$ measurements ($R^2 \sim 0.87$).

Reference Instruments: PM₁₀ GRIMM and T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM₁₀ measurements from GRIMM and T640 was ~ 88% and 76%, respectively.
- Strong correlations between the reference instruments for PM_{10} measurements ($R^2 \sim 0.88$) were observed.

TSI BlueSky vs FEM GRIMM (PM_{2.5}; 5-min mean)

TSI BlueSky vs GRIMM (PM₁₀; 5-min mean)

- The TSI BlueSky sensors showed very weak correlations with the corresponding GRIMM data (R² ~ 0.11)
- Overall, the TSI BlueSky sensors underestimated the PM₁₀ mass concentrations measured by GRIMM
- The TSI BlueSky sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

TSI BlueSky vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The TSI BlueSky sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.75)
- Overall, the TSI BlueSky sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The TSI BlueSky sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

TSI BlueSky vs GRIMM (PM₁₀; 1-hr mean)

TSI BlueSky vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The TSI BlueSky sensors showed strong correlations with the corresponding FEM GRIMM data ($R^2 \sim 0.79$)
- Overall, the TSI BlueSky sensors underestimated the PM₂₅ mass concentrations as measured by FEM GRIMM
- The TSI BlueSky sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM

 $R^2 = 0.8102$

TSI BlueSky vs GRIMM (PM₁₀; 24-hr mean)

TSI BlueSky vs FEM T640 (PM_{2.5}; 5-min mean)

TSI BlueSky vs T640 (PM₁₀; 5-min mean)

TSI BlueSky vs FEM T640 (PM_{2.5}; 1-hr mean)

TSI BlueSky vs T640 (PM₁₀; 1-hr mean)

TSI BlueSky vs FEM T640 (PM_{2.5}; 24-hr mean)

TSI BlueSky vs T640 (PM₁₀; 24-hr mean)

TSI BlueSky vs South Coast AQMD Met Station (Temp; 5-min mean)

- The TSI BlueSky sensors showed strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.89)
- Overall, the TSI BlueSky temperature measurements overestimated the corresponding South Coast AQMD Met Station data
- The TSI BlueSky sensors seemed to track the temperature diurnal variations as recorded by South Coast AQMD Met Station

Note: The TSI BlueSky sensors measure temperature and RH inside of the sensors

TSI BlueSky vs South Coast AQMD Met Station (RH; 5-min mean)

- The TSI BlueSky sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.91)
- Overall, the TSI BlueSky temperature measurements underestimated the corresponding South Coast AQMD Met Station data
- The TSI BlueSky sensors seemed to track the temperature diurnal variations as recorded by South Coast AQMD Met Station

Note: The TSI BlueSky sensors measure temperature and RH inside of the sensors

Discussion

- The three TSI BlueSky sensors' data recovery from Unit 8031, Unit 8027 and Unit 8037 was ~ 87%, 97% and 80%, respectively for both PM_{2.5} and PM₁₀ measurements
- The absolute intra-model variability was ~ 0.55 and 0.54 μ g/m³ for PM_{2.5} and PM₁₀, respectively
- Strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~ 0.87, 1-hr mean) and PM₁₀ (R² ~ 0.88, 1-hr mean) mass concentration measurements
- PM_{2.5} mass concentrations measured by TSI BlueSky sensors showed moderate to strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.66 < R² < 0.78, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by TSI BlueSky sensors showed very weak correlations with the GRIMM and T640 data (R² ~ 0.16 and 0.18, respectively; 1-hr mean) and underestimated PM₁₀ mass concentrations measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary