Laboratory Evaluation Aeroqual AQY (v0.5)

Outline

- 1. Background
- 2. Ozone
- **3.** $NO_2 / NO_2 (V2)$
- **4. PM**_{2.5}

Background

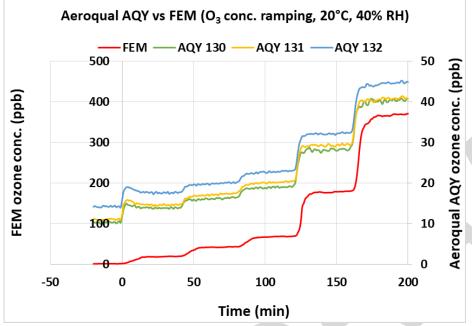
Three **Aeroqual AQY (Version 0.5)** multi-sensor units (IDs: 130, 131, and 132), previously field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (12/22/2017 to 03/27/2018) under ambient environmental conditions, have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, gas concentrations, temperature, and relative humidity.

<u>Aeroqual AQY (3 units tested):</u>

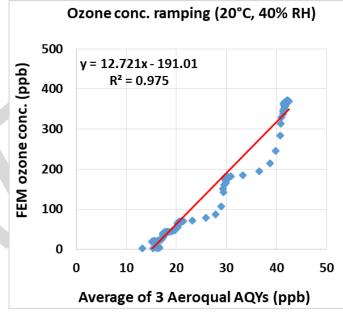
- Sensors: Ozone Gas Sensitive Semiconductor (GSS); NO₂ - Gas Sensitive Electrochemical (GSE) (non-FEM/non-FRM); PM_{2.5} – Laser Particle Counter (LPC) (non-FEM), (Model SDS011 by Nova Fitness)
- Each unit measures O₃ (ppb), NO₂ (ppb), PM_{2.5} (µg/m³), T (°C), RH (%)
- Unit cost: ~\$3000 (includes 2-yr tech support + cloud data software license)
- ➤ Time resolution: 1-min
- Units IDs: AQY 130, AQY 131, AQY 132

Reference instruments:

- ➢ O₃ instrument (FEM, Serinus 10, American Ecotech, Providence, RI); cost: ~\$7,000
 - ➤ Time resolution: 1-min
- NO_x instrument (FRM, Serinus 40, American Ecotech, Providence, RI); cost: ~\$11,000
 - ➤ Time resolution: 1-min
- ➤ GRIMM (FEM PM_{2.5}); cost: ~\$25,000
 - ≻Time resolution: 1-min



3



- **1.** FEM O_3 vs Aeroqual AQY O_3
- 2. Accuracy, data recovery & Intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. NO₂ Interferent
- 6. Discussion

Aeroqual AQY vs FEM (Ozone; 1-min mean)

- The FEM instrument reported a baseline of ~ 2 ppb and the Aeroqual AQY sensors reported baseline values between ~ 10 – 14 ppb
- The three Aeroqual AQY sensors tracked well the ozone concentration variations recorded by FEM instrument
- The Aeroqual AQY sensors underestimated the ozone concentration as recorded by the FEM instrument

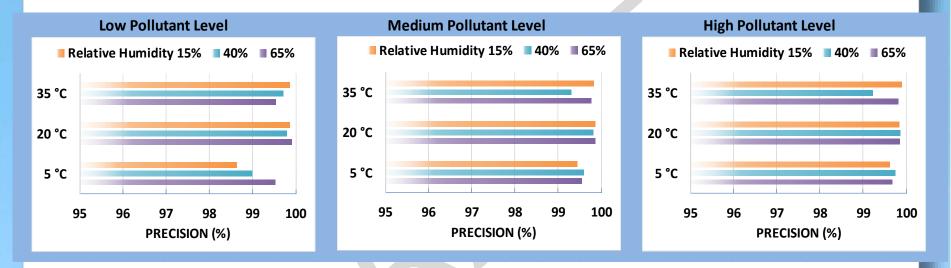
* Note the scale of the x and y axis is different

 The Aeroqual AQY sensors showed very strong correlations with the corresponding FEM ozone conc. (R² > 0.97)

Aeroqual AQY Accuracy (O₃, 1-min mean)

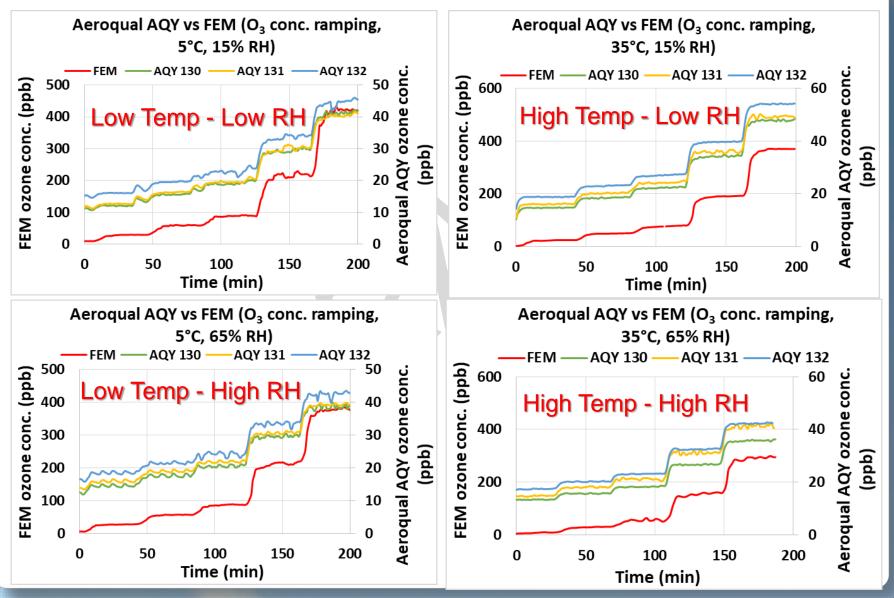
• Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (ppb)	FEM (ppb)	Accuracy (%)
1	15.4	19.5	79.0
2	17.9	42.9	41.7
3	20.8	68.8	30.2
4	30.0	178.8	16.8
5	42.0	368.3	11.4

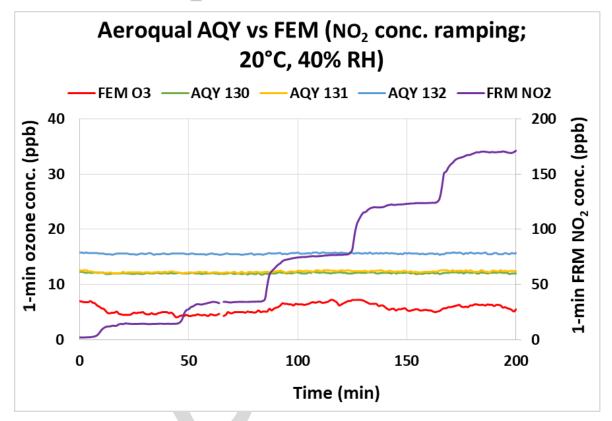

 Accuracy of the three Aeroqual AQY sensors decreased as concentration increased, with accuracy ranging from 11.4% at the highest concentration to 79% at the lowest concentration. The sensors underestimated the ozone concentrations as measured by the FEM instrument at 20 °C and 40% RH.

Aeroqual AQY Data Recovery & Intra-model Variability

- Data recovery for all three Aeroqual AQY units was 100%.
- Low to moderate ozone measurement variations are observed for the three Aeroqual AQY units at 20 °C and 40% RH


Aeroqual AQY Precision (Ozone; 1-min mean)

• Precision* (Effect of ozone conc.,temperature and relative humidity)



- Overall, the three Aeroqual AQY sensors showed high precision for all combinations of low, medium and high ozone conc., T, and RH.
- FEM's precision was also high across all conditions

Aeroqual AQY Climate Susceptibility

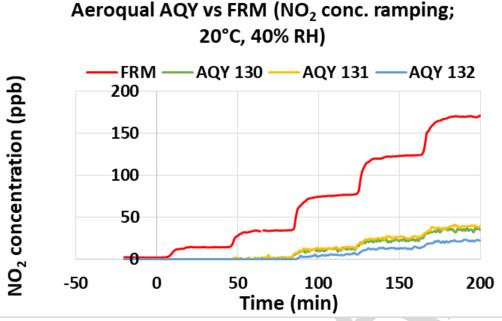
NO₂ Interferent (1-min mean)

In the laboratory, the effect of NO₂ interferent was evaluated by exposing sensors to increasing concentrations of NO₂ at 20 °C and 40% RH. As shown in the figure, both the FEM and Aeroqual AQY O₃ measurements were not affected by the NO₂ interferent and maintained their baseline readings throughout the NO₂ concentration ramping from 0 to ~ 150 ppb.

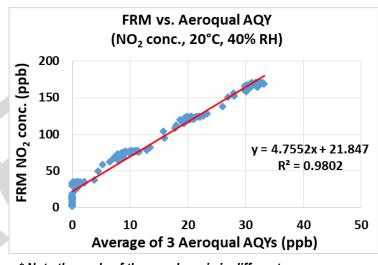
Discussion: Ozone

- Accuracy: The three Aeroqual AQYs showed low to high accuracy compared to the FEM at 20 °C and 40% RH. Accuracy ranges from 11.4% to 79.0%. (refer to slide 6).
- Precision: The three Aeroqual AQY sensors exhibited high precision during all tested conditions (ozone concentration, T and RH). (refer to slide 7)
- Intra-model variability: Low to moderate ozone measurement variations were observed among the three Aeroqual AQY sensors at 20 °C and 40% RH. (refer to slide 6)
- > Data recovery: Data recovery for ozone measurements was 100% for all units. (refer to slide 6)
- Baseline: Under various T/RH conditions, the FEM ozone instrument baseline was close to zero, while the sensors' baseline was around 9 -14 ppb.
- Coefficient of Determination: The Aeroqual AQY sensors showed very strong correlation/linear response with the corresponding the FEM ozone measurement data (R² ~ 0.97) (refer to slide 5)
- Interferent: The Aeroqual AQY sensors were inert to NO₂ at 20 °C and 40% RH. When NO₂ was increased from 0 to 150 ppb, the sensors maintained their baseline readings.
- Climate susceptibility: During the lab studies, temperature and relative humidity had little effect on ozone concentrations as recorded by the Aeroqual AQY sensors.

- **1.** FRM NO_2 vs Aeroqual AQY NO_2
- 2. Accuracy, data recovery & Intra-model variability
- 3. Precision
- 4. Climate susceptibility
- **5. O**₃ Interferent
- 6. Discussion


NO₂ Data Handling

During the AQ-SPEC field evaluation, Aeroqual corrected and calculated NO₂ in all units, using two different approaches:


1st approach (in this report, pollutant referred to as NO₂):

- Correction based on AQY Ozone data in real-time
- Calculation by Aeroqual algorithm
- 2nd approach (in this report, pollutant referred to as NO₂ V2)
- Correction based on AQY Ozone and AQY RH data in real-time
- Calculation by <u>new</u> Aeroqual algorithm
- To better assist in understanding the procedures mentioned above, Aeroqual has shared all relevant proprietary information with AQ-SPEC
- The same data handling procedures were used during the lab evaluation

Aeroqual AQY vs FRM (NO₂; 1-min mean)

- The FRM instrument reported baseline values of ~ 2 ppb and the Aeroqual AQY sensors reported baseline values of 0 ppb as the FRM measurement increased from 0-30 ppb
- The three Aeroqual AQY sensors tracked the concentration variations recorded by the FRM instrument at higher NO₂ concentration but did not tack concentration change below 30 ppb
- Aeroqual AQY sensors underestimated the NO₂ concentration as recorded by the FRM instrument

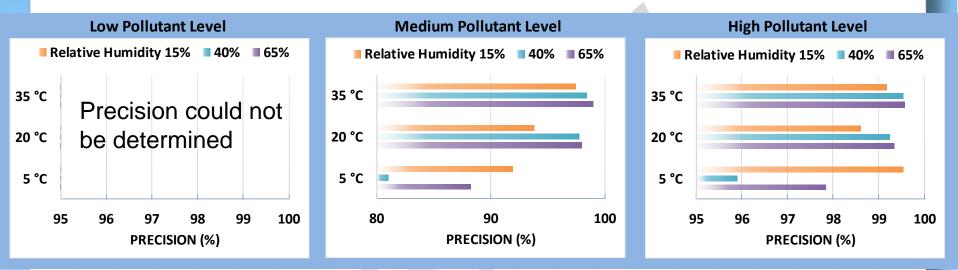
* Note the scale of the x and y axis is different

 The Aeroqual AQY sensors showed very strong correlations with the FRM NO₂ conc. (R² > 0.98)

Aeroqual AQY Accuracy: (NO₂; 1-min mean)

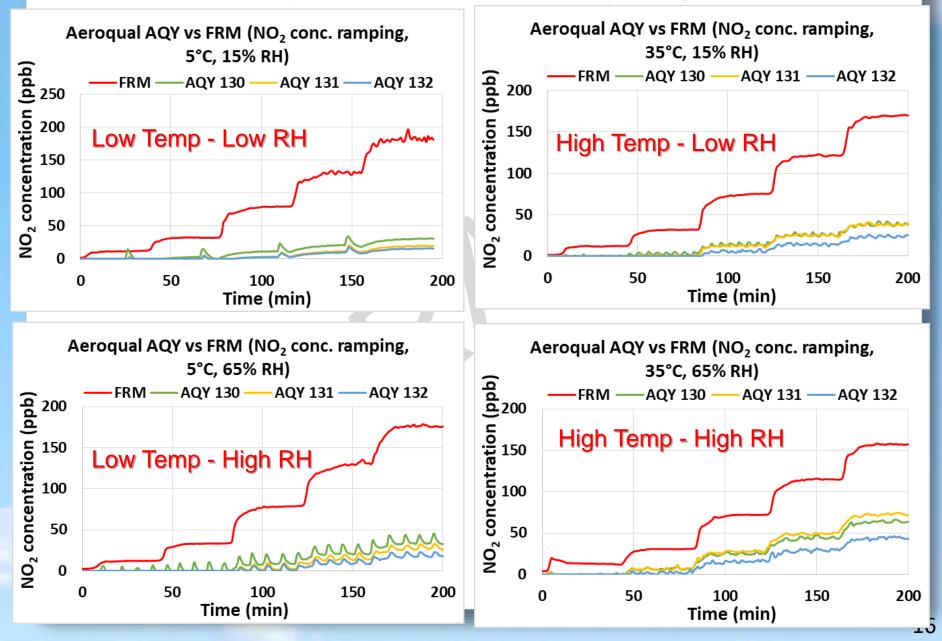
• Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (ppb)	FRM (ppb)	Accuracy (%)
1	N/A	14.4	N/A
2	0.9	34.1	2.6
3	10.2	75.9	13.4
4	20.6	123.0	16.7
5	32.2	170.0	18.9

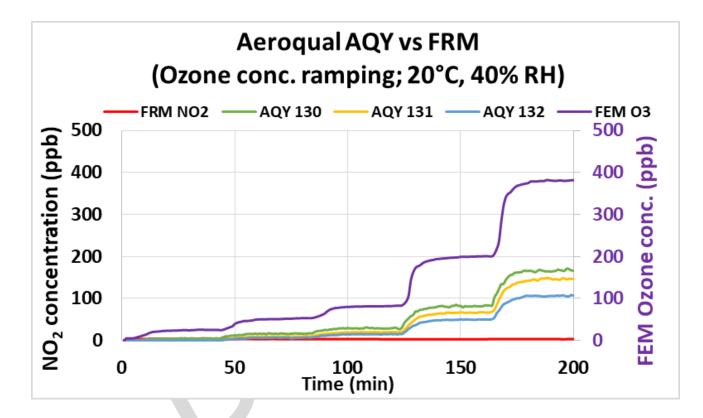

 The three Aeroqual AQY units showed low accuracy compared to the FRM at 20 °C and 40% RH. Accuracy ranged from 2.6 to 19% with increasing NO₂ concentration.

Aeroqual AQY Data Recovery & Intra-model Variability

- Data recovery for all three Aeroqual AQY units was 100%.
- High NO₂ measurement variations among the Aeroqual AQY sensors at 20 °C and 40% RH at medium and high. Intra-model variability could not be determined at low NO₂ concentrations


Precision: Aeroqual AQY (NO₂; 1-min mean)

• Precision (Effect of NO₂ conc., temperature and relative humidity)

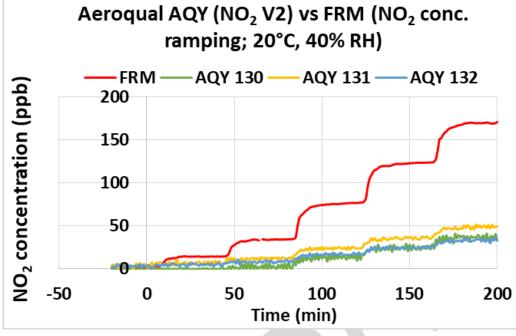


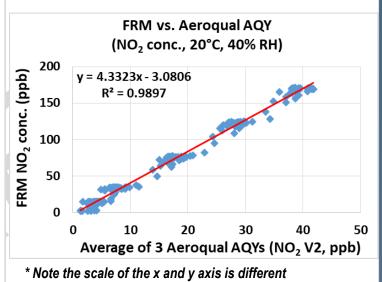
- Overall, precision of the three Aeroqual AQY units at low NO₂ concentrations for all conditions could not be determined due to the sensors consistently reporting 0 ppb values
- Moderate to high precisions were observed for all combinations of medium and high NO₂ conc., T, and RH.
- FRM's precision was also high across all conditions.

Aeroqual AQY Climate Susceptibility

O₃ Interferent (NO₂;1-min mean)

In the laboratory, the effect of O_3 interferent was evaluated by exposing sensors to increasing O_3 concentrations at 20 °C and 40% RH. As shown in the figure, the FRM NO₂ measurements maintained their baseline readings throughout the O₃ concentration ramping from 0 to ~ 400 ppb while the Aeroqual AQY sensors showed increasing NO₂ concentrations as O₃ interferent concentration increased from 0 to ~ 400 ppb.


Discussion: NO₂


- Accuracy: The three Aeroqual AQYs showed low accuracy compared to the FRM at 20 °C and 40% RH. Accuracy ranged from 2.6 % to 19%. (refer to slide 14).
- Precision: The precision of the three Aeroqual AQY sensors could not be determined for all RH and T conditions at low concentrations. Moderate to high precisions were observed for all RH and T conditions at medium and high concentrations (refer to slide 15)
- Intra-model variability: High NO₂ measurement variations among the Aeroqual AQY sensors at 20 °C and 40% RH at medium and high. Intra-model variability could not be determined at low NO₂ concentrations (refer to slide 14)
- > **Data recovery**: Data recovery for NO₂ measurements was 100% for all units. (refer to slide 14)
- Coefficient of Determination: Aeroqual AQY sensors showed very strong correlation/linear response with the corresponding FRM NO₂ measurement data at 20 °C and 40% RH (R² > 0.98) (refer to slide 13)
- Interferent: Ozone had shown to interfere with the NO₂ measurements recorded by the Aeroqual AQY sensors at 20 °C and 40% RH. The NO₂ concentration measured by the sensors increased as the ozone concentrations increased from 0 to ~400 ppb. (refer to slide 17)
- Climate susceptibility: During the lab studies, the Aeroqual AQY sensors showed cyclic peaks at low temperature at all relative humidity. (refer to slide 16)

$NO_2(V2)$

- 1. FRM NO₂ vs Aeroqual AQY NO₂
- 2. Accuracy, data recovery & Intra-model variability
- 3. Precision
- 4. Climate susceptibility
- **5. O**₃ Interferent
- 6. Discussion

Aeroqual AQY vs FRM (NO₂ V2; 1-min mean)

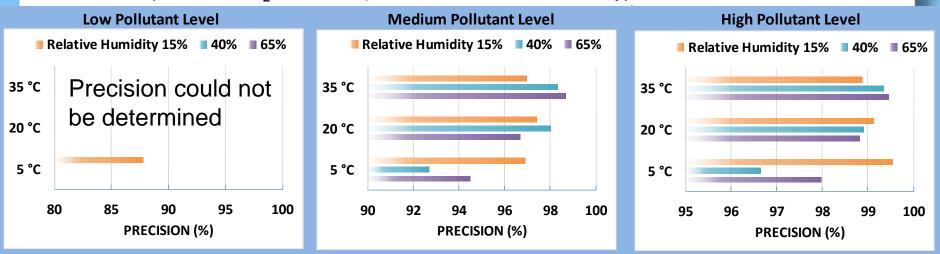
- The FRM instrument reported baseline values of ~ 2 ppb and the Aeroqual AQY130 sensor reported baseline values ~ 0 ppb and AQY 131 and AQY 132 reported baseline values ranging between 0 - 7 ppb
- The Aeroqual AQY sensors tracked the concentration variations recorded by the FRM instrument.
- The Aeroqual AQY sensors underestimated the NO₂ concentrations as recorded by the FRM instrument

 Three Aeroqual AQY sensors showed very strong correlations with the FRM NO₂ conc. (R² > 0.98)

Aeroqual AQY Accuracy: (NO₂ V2, 1-min mean)

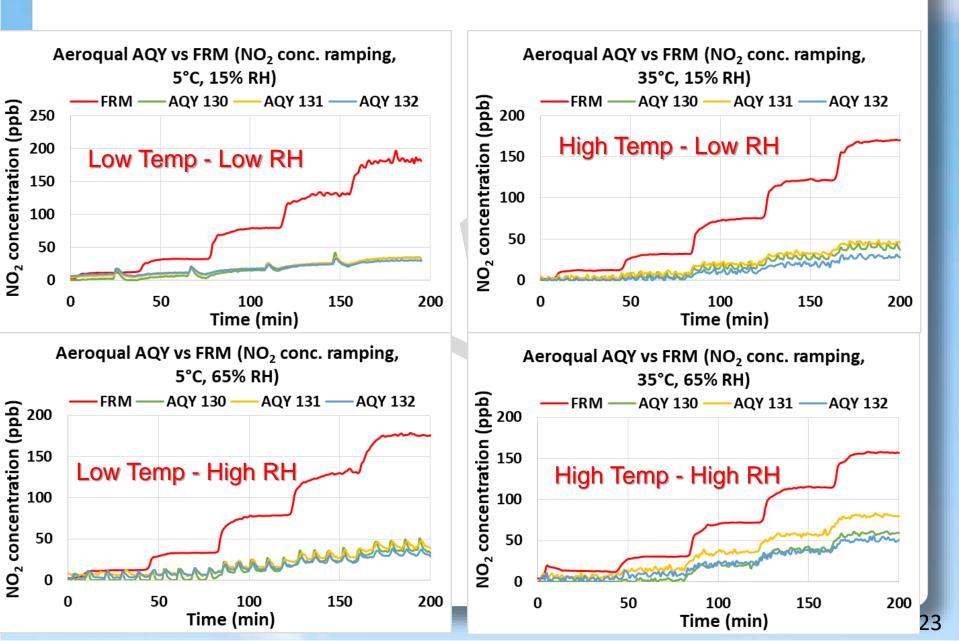
• Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (ppb)	FRM (ppb)	Accuracy (%)
1	4.0	14.4	27.5
2	7.7	34.1	22.7
3	18.3	75.9	24.1
4	28.5	123.0	23.1
5	39.8	170.0	23.4

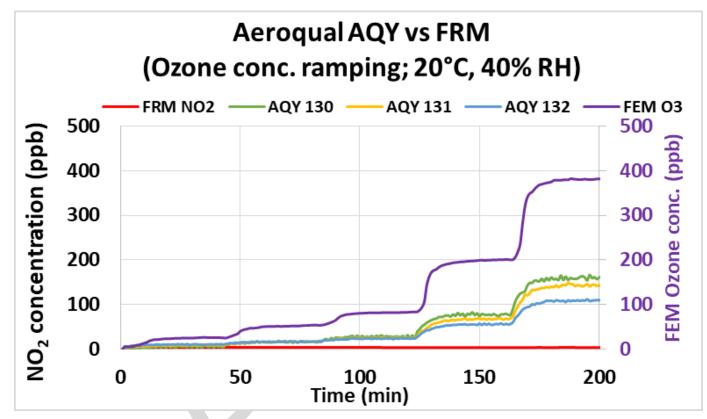

 The three Aeroqual AQY sensors showed low accuracy compared to the FRM at 20 °C and 40% RH. Accuracy ranged from 22 to 27%.

Aeroqual AQY Data Recovery & Intra-model Variability

- Data recovery for all three Aeroqual AQY units was 100%.
- High NO₂ measurement variations among the Aeroqual AQY sensors at 20 °C and 40% RH at medium and high. Intra-model variability could not be determined at low NO₂ concentrations


Precision: Aeroqual vs FRM (NO₂ V2; 1-min mean)

• Precision* (Effect of NO₂ conc.,temperature and relative humidity)

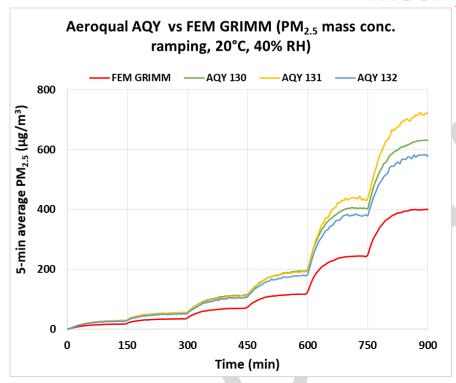


- Overall, precision of the three Aeroqual AQY sensors at low NO₂ V2 concentrations for all conditions could not be determined due to AQY 130 consistently reporting 0 ppb values
- High precisions are observed for all combinations of medium and high NO₂ conc., T, and RH.
- FRM's precision was also high across all conditions.

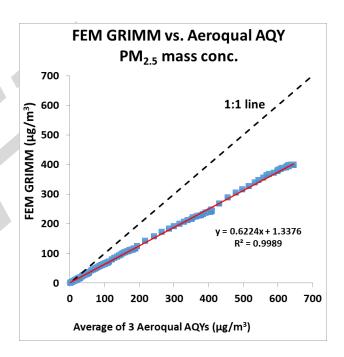
Aeroqual AQY Climate Susceptibility

O₃ Interferent (NO₂ V2; 1-min mean)

In the laboratory, the effect of O_3 interferent was evaluated by exposing sensors to increasing concentrations of O_3 at 20 °C and 40% RH. As shown in the figure, the FRM NO₂ maintained their baseline readings throughout the O_3 concentration ramping from 0 to ~ 400 ppb while the Aeroqual AQY sensors showed increasing NO₂ concentrations as O_3 interferent concentration increased from 0 to ~ 400 ppb.


Discussion: NO₂ V2

- Accuracy: The three Aeroqual AQYs showed low accuracy compared to the FRM at 20 °C and 40% RH. Accuracy ranged from 23 % to 27%. (refer to slide 21).
- Precision: Precision of the three Aeroqual AQY sensors at low NO₂ concentrations for all conditions could not be determined. The three Aeroqual AQY sensors exhibited high precision for all RH and T condition at medium and high concentrations (refer to slide 22)
- Intra-model variability: High NO₂ measurement variations were observed among the Aeroqual AQY sensors at 20 °C and 40% RH at medium and high. Intra-model variability could not be determined at low NO₂ concentrations (refer to slide 21)
- > **Data recovery**: Data recovery for NO₂ measurements was 100% for all units. (refer to slide 21)
- Coefficient of Determination: Aeroqual AQY sensors showed very strong correlation/linear response with the corresponding FRM NO₂ measurement data (R² > 0.98) (refer to slide 20)
- Interferent: The ozone interferent interfered with the NO₂ measurements recorded by the Aeroqual AQY sensors at 20 °C and 40% RH and the NO₂ concentration measured by the sensors increased in the same manner as ozone as the ozone interferent concentration increased from 0 to ~400 ppb (refer to side 24)
- Climate susceptibility: During the lab studies, the Aeroqual AQY sensors showed cyclic peaks at low temperature at all relative humidity. (refer to slide 23)



- **1.** FEM GRIMM $PM_{2.5}$ vs Aeroqual AQY $PM_{2.5}$
- 2. Accuracy, data recovery & Intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. Discussion

Aeroqual AQY vs FEM GRIMM (PM_{2.5} mass; 5-min mean)

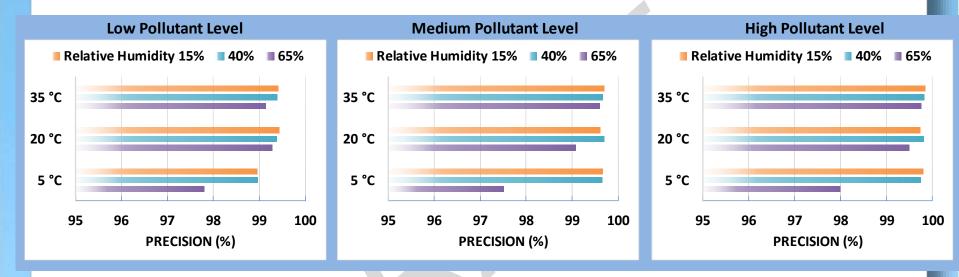
- The three Aeroqual AQYsensors tracked well with the concentration variations recorded by FEM GRIMM
- Aeroqual AQY sensor overestimated the FEM GRIMM PM_{2.5} mass concentrations

 Three Aeroqual AQY sensors showed very strong correlations with FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

Accuracy: Aeroqual AQY vs FEM (PM_{2.5}; 1-min mean)

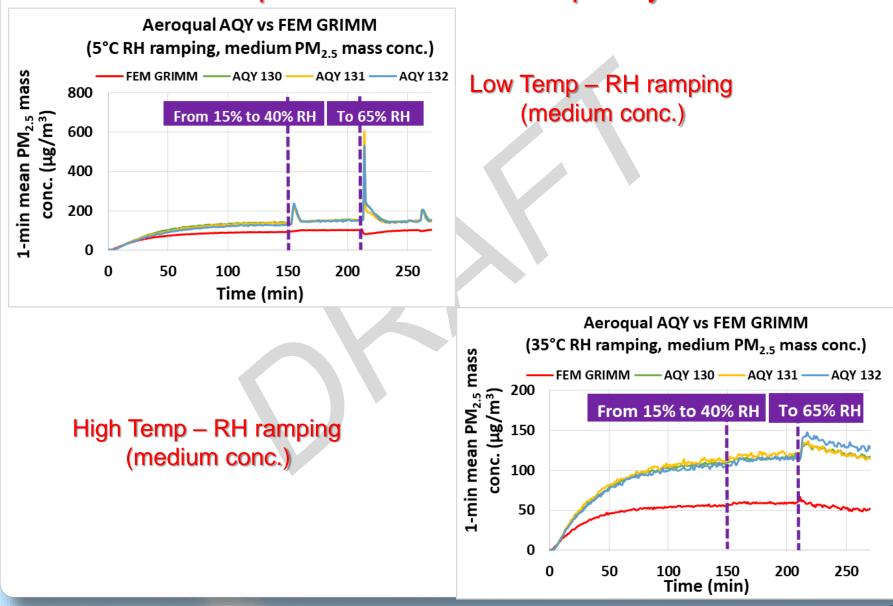
Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor Mean (µg/m³)	FEM GRIMM (µg/m³)	Accuracy (%)
1	28.2	17.0	34.6
2	50.1	34.7	55.6
3	109.6	69.8	42.9
4	188.0	117.0	39.4
5	407.0	244.0	33.2
6	581.4	366.5	41.4


• The three Aeroqual AQY units showed low to moderate accuracy compared to the FEM at 20 °C and 40% RH. Accuracy ranged from 33 to 55%.

Aeroqual AQY Data Recovery & Intra-model Variability

- Data recovery for all three Aeroqual AQY units was 100%.
- Low PM_{2.5} measurement variations among the Aeroqual AQY sensors at 20 °C and 40% RH


Aeroqual AQY vs FEM GRIMM (PM_{2.5}; 1-min mean)

• Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)

- Overall, the three Aeroqual AQY sensors showed high precision for all combinations of low, medium and high PM_{2.5} conc., T, and RH.
- FEM GRIMM also showed high precisions at all combinations of low, medium and high high PM_{2.5} conc., T, and RH.

Aeroqual AQY Climate Susceptibility

Discussion PM_{2.5}

- Accuracy: Overall, the three Aeroqual AQY sensors have low to moderate accuracy, compared to FEM GRIMM PM_{2.5} in the range of 0 to 400 µg/m³. Aeroqual AQY sensors overestimate FEM GRIMM's reading in the laboratory experiments. (refer to slide 28)
- Precision: The Aeroqual AQY sensors showed high precision for almost all test combinations (PM concentrations, T and RH) (refer to slide 29)
- Intra-model variability: low intra-model variability was observed among the three Aeroqual AQY sensors. (refer to slide 28)
- > Data Recovery: Data recovery for PM_{2.5} mass concentration was 100% for all units tested. (refer to slide 28)
- Coefficient of Determination: The three Aeroqual AQY sensors showed very strong correlation/linear response with the corresponding FEM GRIMM PM_{2.5} measurement data (R² > 0.99) for mass concentration range between 0 and 400 µg/m³. (refer to slide 27)
- Climate susceptibility: For most of the temperature and relative humidity combinations, the climate condition had minimal effect on the Aeroqual AQY's precision. Aeroqual AQY sensors had some spikes at the set-points of RH changes at all PM concentrations (refer to slide 30)