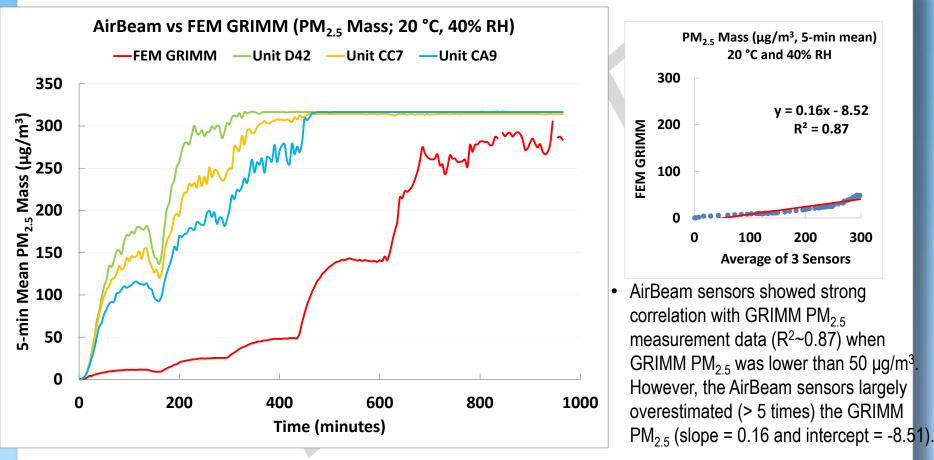
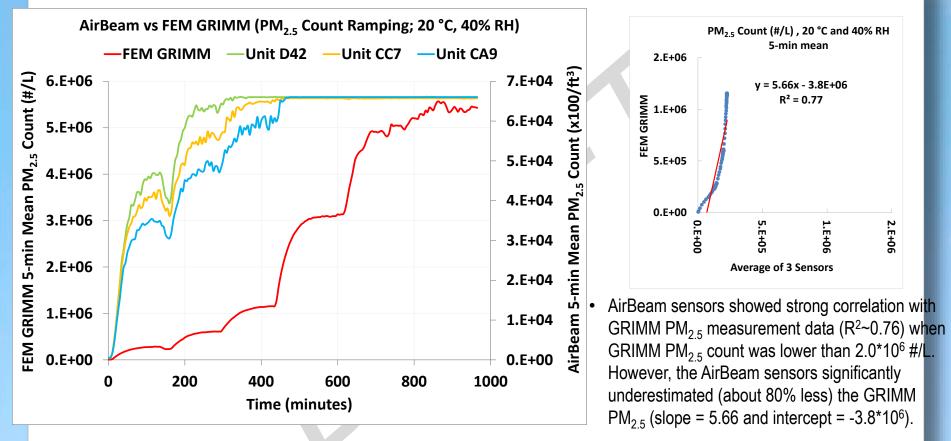

Laboratory Evaluation AirBeam PM_{2.5} Sensor

Background

- Three AirBeam PM Sensors that were previously field-tested at the South Coast AQMD Rubidoux fixed air monitoring station (deployment period: 04/30/2015 to 06/19/2015) under ambient weather conditions, have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled PM concentration, temperature and relative humidity.
- AirBeam Sensor (3 units tested):
 - Particle sensors (optical; non-FEM)
 - Each unit measures: PM_{2.5} mass (µg/m³) and PM_{2.5} count (hundred particles/ft³)
 - ➤ Unit cost: ~\$200
 - ➤ Time resolution: 1-min
 - Firmware: March 2015 AirBeam firmware
 - ➢ Units IDs: D42, CC7, CA9



- GRIMM (reference method):
 - Optical particle counter
 - ► FEM PM_{2.5}
 - Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- ➤ Cost: ~\$25,000
- ➤ Time resolution: 1 min



AirBeam vs FEM GRIMM (PM_{2.5} mass; 5-min mean)

- When GRIMM PM_{2.5} concentration was less than 50 µg/m³, the AirBeam sensors tracked well with PM_{2.5} (µg/m³) variations (concentration ramping) recorded by the GRIMM.
- The AirBeam sensors reached their maximum PM_{2.5} reading of about 300 μg/m³ when GRIMM PM_{2.5} exceeded 50 μg/m³.
- The GRIMM showed very low measurement variability at low PM_{2.5} concentration compared to the AirBeam sensors.

AirBeam vs FEM GRIMM (PM_{2.5} count; 5-min mean)

- When GRIMM PM_{2.5} count was less than 2.0*10⁶ #/L, the AirBeam sensors tracked well with PM_{2.5} (#/L) diurnal variations (concentration ramping) recorded by the GRIMM.
- The Airbeam sensors reached their maximum PM_{2.5} reading of about 6.5*10⁴ (x100/ft³) when GRIMM PM_{2.5} exceeded 1.0*10⁶ #/L.
- The GRIMM showed very low measurement variability at low PM_{2.5} count compared to the AirBeam sensors.

AirBeam PM_{2.5} mass accuracy

• Accuracy (20 °C and 40% RH)

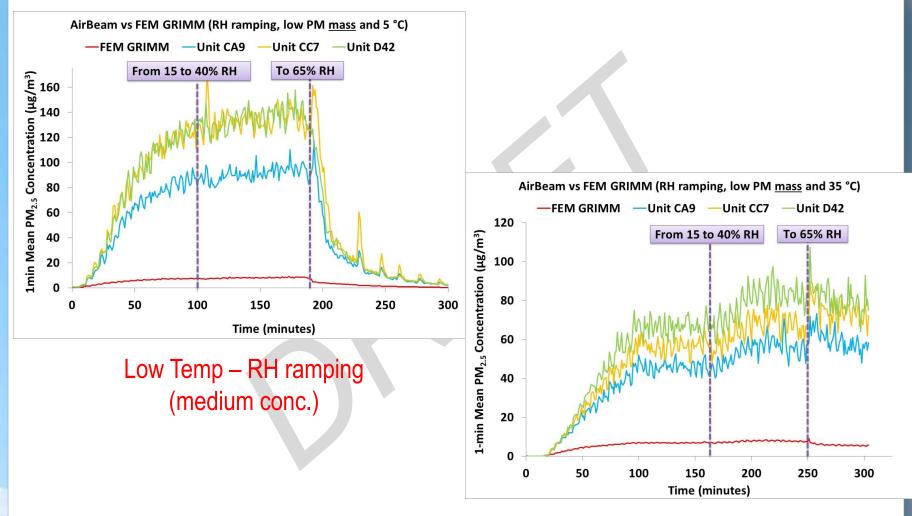
Steady State (#)	Sensor mean (µg/m³)	FEM GRIMM (µg/m³)	Accuracy (%)
1	147.9	11.5	-1086
2	243	25.4	-757
3	296.2	48.7	-408

 Overall, the three AirBeam sensors showed very low accuracy compared to FEM GRIMM at 20 °C and 40% RH, when varying PM_{2.5} mass concentration from 10 to 50 μg/m³. The AirBeam significantly overestimated the FEM GRIMM readings. According to the method of calculating accuracy, the %accuracy for the sensors were all negative. When PM_{2.5} mass conc. was over 50 μg/m³, AirBeam sensors reached a plateau of 315 μg/m³.

AirBeam data recovery & intra-model variability & LDL

- Data recovery for PM_{2.5} from all three AirBeam units was 100%.
- Substantial intra-model variability (45%) was observed between the three AirBeam sensors at low PM_{2.5} concentration (measured by GRIMM) at 20 °C and 40% RH. When the PM_{2.5} concentration measured by the GRIMM exceeded 50 µg/m³, the AirBeam sensors quickly reached their maximum of 300 µg/m³, and they stopped responding to any further concentration increase. Thus, intra-model variability for medium and high PM_{2.5} concentration could not be estimated.
- AirBeam sensors' LDL were close to 0 $\mu g/m^3.$

AirBeam vs FEM GRIMM (PM_{2.5}; 5-min mean)


• Precision (Low PM_{2.5} conc., and various Temperature and Relative Humidity)

Low PM_{2.5} Concentration Relative Humidity 15% 40% 65% 35 °C 20 °C 5 °C 95 96 97 98 99 100 PRECISION (%)

Precision could not be estimated at medium to high $PM_{2.5}$ concentration; at least one of the three AirBeam sensors reached the maximum $PM_{2.5}$ it could measure.

- Overall, the three AirBeam sensors showed good precision for almost all combinations of T and RH at low PM_{2.5} concentration.
- At medium to high GRIMM PM_{2.5}, sensors' precision could not be estimated, because the sensors were only reporting their maximum measurement value of 300 µg/m³.
- FEM GRIMM precision was very high across all conditions.

AirBeam PM_{2.5} Climate Susceptibility

High Temp – RH ramping (low conc.)

Discussion

- Accuracy: Overall, the three AirBeam sensors showed very low accuracy compared to FEM GRIMM at 20 °C and 40% RH, when varying PM_{2.5} mass concentration from 10 to 50 µg/m³. The AirBeam sensors significantly overestimated the FEM GRIMM readings. According to the method of calculating accuracy, the %accuracy for the sensors were all negative. When PM_{2.5} mass conc. was over 50 µg/m³, Airbeam sensors reached plateau of 315 µg/m³. (refer to slides 3, 4, and 5)
- Precision: Overall, the three AirBeam sensors showed good precision for almost all combinations of T and RH at low PM_{2.5} concentration. At moderate to high GRIMM PM_{2.5}, sensors' precision could not be estimated, because the sensors were only reporting their maximum value of 300 µg/m³. (refer to slide 6)
- > **Data recovery:** Data recovery for $PM_{2.5}$ from all three AirBeam units was 100%.
- Coefficient of Determination: AirBeam sensors showed strong correlation/linear response with the corresponding FEM GRIMM PM_{2.5} measurement data (R² ~ 0.87) for mass concentrations below 50 µg/m³ (refer to slides 3 and 4)
- > Lower detection limit (LDL): AirBeam sensors' LDL was close to $0 \mu g/m^3$.
- Climate susceptibility: From the laboratory studies, temperature and relative humidity had little effect on the sensor performance at low GRIMM PM_{2.5}. However, at high PM_{2.5} concentrations, sensors failed to respond to the diurnal variations and all reached their maximum output reading of about 300 µg/m³, therefore, the effect under those conditions could not be studied. (refer to slide 7)