Laboratory Evaluation HabitatMap AirBeam2 Sensor

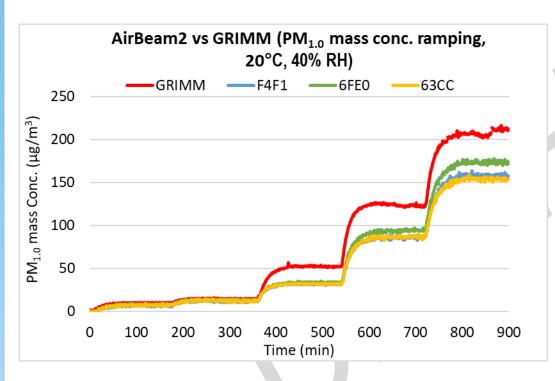
Background

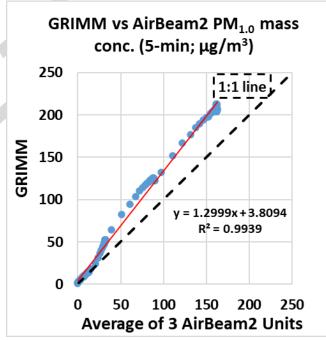
Three **HabitatMap AirBeam2** (Hereinafter AirBeam2) sensors (units IDs: F4F1, 6FE0 and 63CC) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (07/20/2018 to 09/19/2018) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three AirBeam2 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

- AirBeam2 (3 units tested):
 - ➤ Particle sensor (optical; non-FEM)
 - ➤ PM sensor: Plantower PMS7003
 - Each unit measures: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³) Temperature (°F), Relative Humidity (%) (measures T and RH inside of sensor)
 - ➤ Unit cost: ~\$250
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: F4F1, 6FE0, 63CC
 - ➤ Differences from 1st Generation:
 - Different hardware (temp/RH sensor, PM sensor) and design
 - Firmware: 3.19.18 AirBeam2
 - Wi-Fi and cellular capabilities
 - Different microcontroller
 - Measures PM_{1.0}, PM_{2.5} and PM₁₀ mass conc. only

GRIMM (reference method):

- ➤ Optical particle counter
- ightharpoonup FEM PM_{2.5}
- ➤ Uses proprietary algorithms to calculate PM_{1.0}, PM_{2.5}, and PM₁₀ mass conc. from particle number measurements
- > Cost: ~\$25,000
- > Time resolution: 1-min




Evaluation results for PM_{1.0} mass concentration

HabitatMap AirBeam2 vs GRIMM

AirBeam2 vs GRIMM (PM_{1.0} mass conc.)

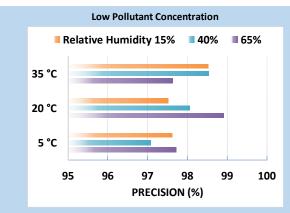
Coefficient of Determination

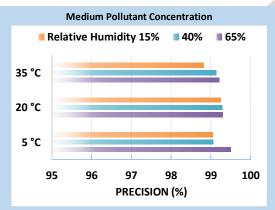
- The AirBeam2 sensors tracked well with the PM_{1.0} concentration variation as recorded by the GRIMM in the concentration range of 0 ~200 µg/m³.
- The AirBeam2 sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99) and underestimated PM_{1.0} mass concentration as recorded by GRIMM

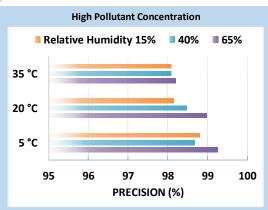
AirBeam2 vs GRIMM PM_{1.0} Accuracy

Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	7.0	9.5	73.3
2	11.8	14.2	83.3
3	32.0	51.9	61.6
4	89.1	123.4	72.2
5	162.0	211.8	76.5

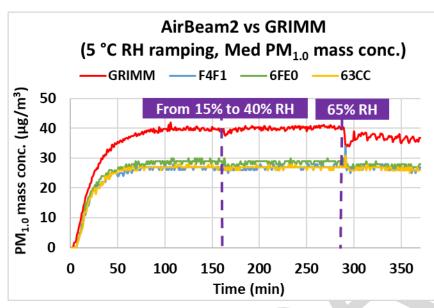

• The AirBeam2 sensors underestimated GRIMM PM_{1.0} mass concentration. The accuracy of the AirBeam2 sensors was fairly constant (62% to 83%) over the range of tested PM_{1.0} mass concentrations.

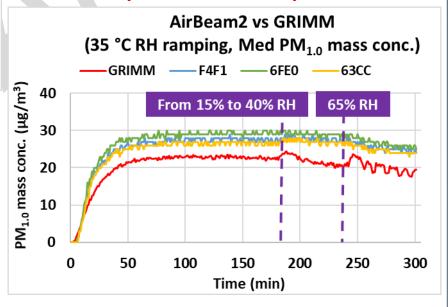

AirBeam2: Data Recovery and intra-model variability


- Data recovery for PM_{1.0} mass concentration from all units was 100%
- Very low PM_{1,0} measurement variations were observed between the AirBeam2 sensors

PM_{1.0} Precision: AirBeam2

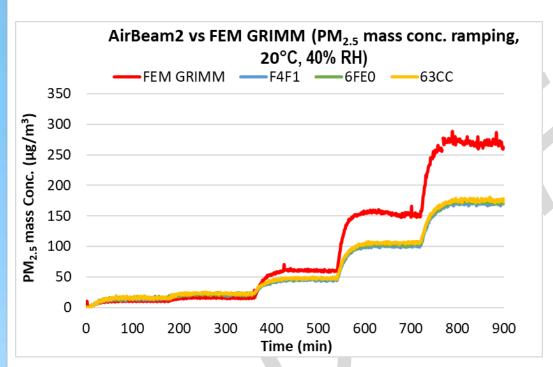
• Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)



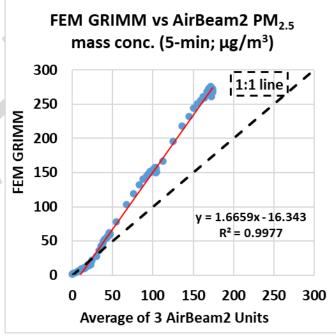

• Overall, the AirBeam2 sensors showed high precision for all of the combinations of low, medium and high PM_{1,0} conc., T and RH.

AirBeam2 PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)

Evaluation results for PM_{2.5} mass concentration


HabitatMap AirBeam2 vs FEM GRIMM

AirBeam2 vs FEM GRIMM (PM_{2.5} mass conc.)

 The AirBeam2 sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~300 μg/m³.

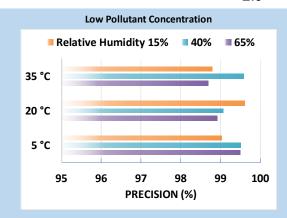
Coefficient of Determination

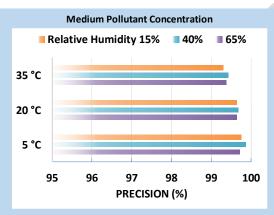
 The AirBeam2 sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

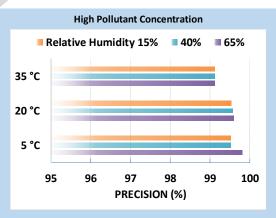
AirBeam2 vs FEM GRIMM PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	15.1	10.2	51.4
2	21.6	15.2	57.8
3	46.3	59.6	77.7
4	103.7	153.1	67.7
5	173.0	270.1	64.1

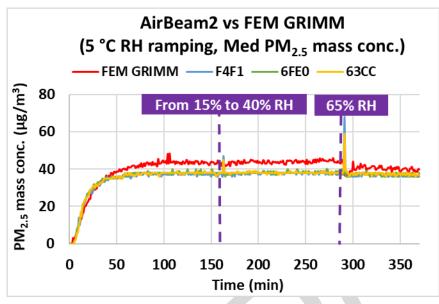

The AirBeam2 sensors underestimated FEM GRIMM PM_{2.5} mass concentration at 20 °C and 40% RH.
The accuracy of the AirBeam2 sensors was fairly constant (51% to 78%) over the range of PM_{2.5} mass concentrations tested.

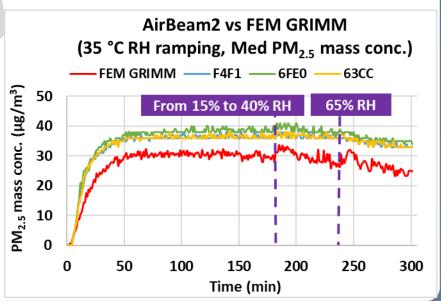

AirBeam2: Data Recovery and intra-model variability


- Data recovery for PM_{2.5} mass concentration from all units was 100%
- Very low PM_{2.5} measurement variations were observed between the AirBeam2 sensors

PM_{2.5} Precision: AirBeam2

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)




• Overall, the AirBeam2 sensors showed high precision for all of the combinations of low, medium and high PM_{2.5} conc., T and RH.

AirBeam2 PM_{2.5}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- ➤ **Accuracy**: Overall, the accuracy of the AirBeam2 sensors was fairly constant over the range of PM_{1.0} and PM_{2.5} mass concentrations tested. The AirBeam2 sensors underestimated both PM_{1.0} and PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- ▶ Precision: The AirBeam2 sensors have high precision for all test combinations (PM concentrations, T and RH) for both PM_{1.0} and PM_{2.5} mass concentrations
- > Intra-model variability: Low intra-model variability was observed among the AirBeam2 sensors.
- ➤ Data Recovery: Data recovery for PM_{1.0} and PM_{2.5} mass concentration from all units was 100%.
- \triangleright Coefficient of Determination: The AirBeam2 sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the AirBeam2's precision. The AirBeam2 sensors showed some small spikes at the 65% RH set-point at 5°C.