Laboratory Evaluation AS-LUNG Portable

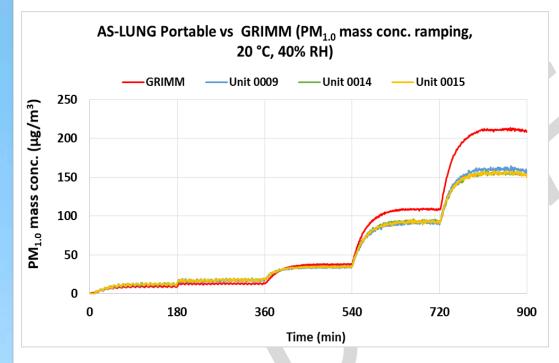
Background

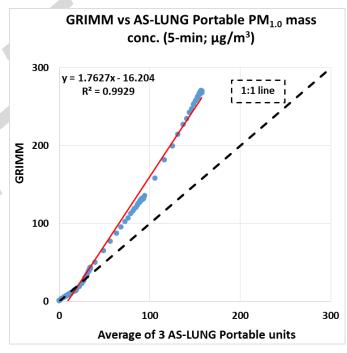
Three **AS-LUNG Portable** sensors (units IDs: 0009, 0014, and 0015) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (10/06/2017 to 12/14/2017) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity.

AS-LUNG Portable (3 units tested):

- Particle sensors (optical; non-FEM)
- PM sensor: Plantower PMS3003
- Each unit measures: PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration (µg/m³)
- ➢ Unit also carries a CO₂ (ppm) sensor
- ➤ Unit cost: \$999
- Time resolution: 15 seconds
- ➤ Units IDs: 0009, 0014 and 0015

GRIMM (reference method):


- Optical particle counter
- ► FEM PM_{2.5}
- Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- ≻Cost: ~\$25,000
- ➤Time resolution: 1-min


Evaluation results for PM_{1.0} mass concentration

AS-LUNG Portable vs GRIMM

AS-LUNG Portable vs GRIMM (PM_{1.0} mass conc.)

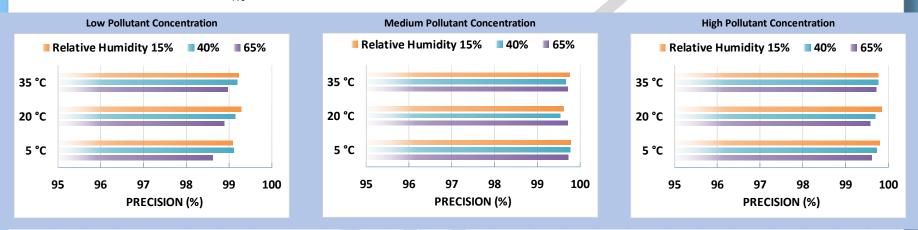
• The AS-LUNG Portable sensors tracked well with the concentration variation recorded by the GRIMM in the concentration range of 0 - \sim 200 µg/m³.

 The AS-LUNG Portable sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99) and underestimated PM_{1.0} mass conc. as recorded by GRIMM

AS-LUNG Portable vs GRIMM PM_{1.0}: Accuracy

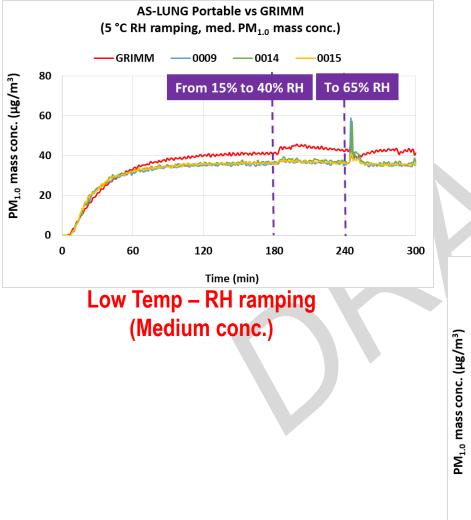
Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	GRIMM (µg/m³)	Accuracy (%)
1	12.1	9.2	67.6
2	17.8	13.0	62.5
3	34.5	38.0	90.8
4	92.4	108.7	85.0
5	155.5	210.2	74.0

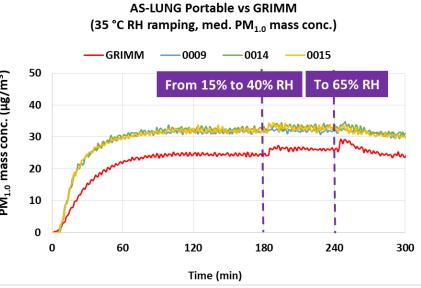

The AS-LUNG Portable sensors overestimated lower PM_{1.0} conc. (<20 μg/m³) and underestimated higher PM_{1.0} conc. (> ~ 40 μg/m³). The accuracy of the AS-LUNG Portable sensors is higher at PM_{1.0} concentrations greater than or equal to ~ 40 μg/m³, ranging from 62.5% at the lower concentrations to 90.8% at the higher concentrations.

AS-LUNG Portable: Data Recovery and intra-model variability

- Data recovery for $PM_{2.5}$ mass concentration from all units was ~100%
- Very low PM_{1.0} measurement variations were observed between the AS-LUNG portable sensors

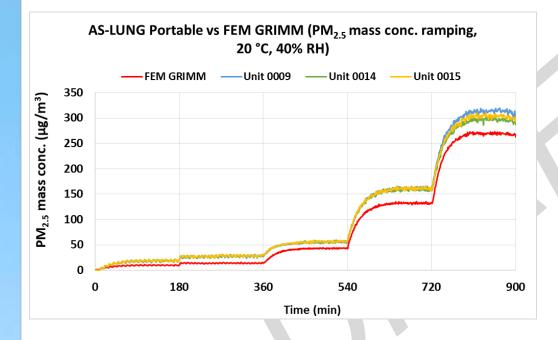

AS-LUNG Portable: PM_{1.0} Precision

• Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)



- Overall, the AS-LUNG Portable sensors showed high precision for all of the combinations of low, medium and high PM_{1.0} conc., T, and RH.
- Precision is relatively higher at higher PM_{1.0} concentrations.

AS-LUNG Portable: Climate Susceptibility


High Temp – RH ramping (Medium conc.)

Evaluation results for PM_{2.5} mass concentration

AS-LUNG Portable vs FEM GRIMM

AS-LUNG Portable vs FEM GRIMM (PM_{2.5} mass conc.)

- FEM GRIMM vs AS-LUNG Portable PM_{2.5} mass conc. (5-min; μg/m³)
- The AS-LUNG Portable sensors tracked well with the concentration variation recorded by the FEM GRIMM in the concentration range of 0 \sim 300 µg/m³.

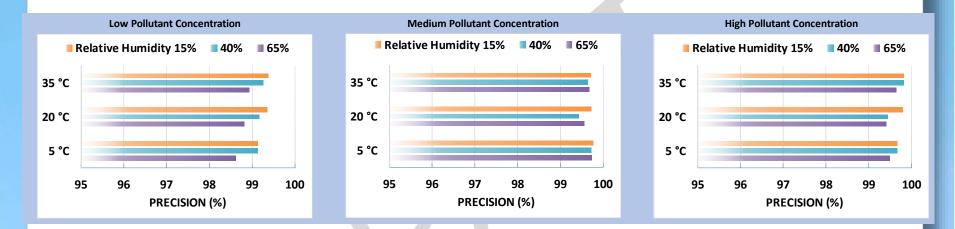
•

 The AS-LUNG Portable sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

AS-LUNG Portable vs FEM GRIMM PM_{2.5}: Accuracy

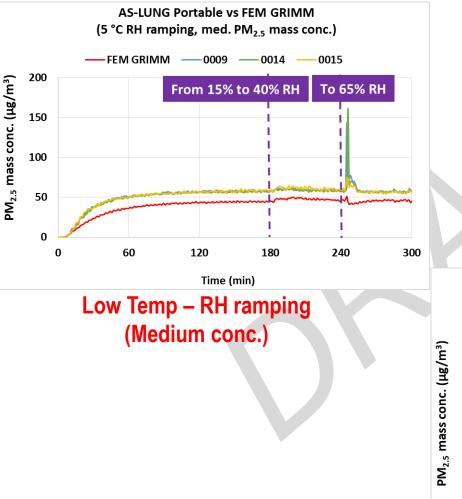
Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (µg/m³)	Accuracy (%)
1	19.0	9.9	8.7
2	28.7	14.2	2.5
3	56.3	43.4	70.4
4	160.1	132.1	78.8
5	300.8	267.4	87.5

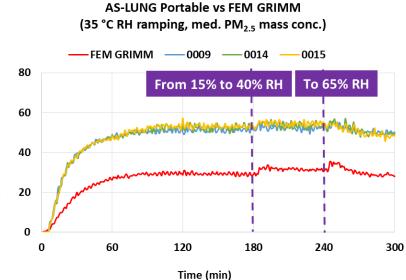

The AS-LUNG Portable sensors overestimated FEM GRIMM PM_{2.5} mass concentration. The accuracy of the AS-LUNG Portable sensors is higher at PM_{2.5} concentrations greater than or equal to ~ 50 µg/m³, ranging from 2.5% at the lower concentrations to 87.5% at the higher concentrations.

AS-LUNG Portable: Data Recovery and intra-model variability

- Data recovery for $PM_{2.5}$ mass concentration from all units was ~100%
- Very low PM_{2.5} measurement variations were observed between the AS-LUNG portable sensors


AS-LUNG Portable: PM_{2.5} Precision

• Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)



- Overall, the AS-LUNG Portable sensors showed high precision for all of the combinations of low, medium and high PM_{2.5} conc., T, and RH.
- Precision is relatively higher at higher PM_{2.5} concentrations.

AS-LUNG Portable: Climate Susceptibility

High Temp – RH ramping (Medium conc.)

Discussion

- > Accuracy: Overall, the AS-LUNG Portable sensors have relatively high accuracy at higher $PM_{1.0}$ and $PM_{2.5}$ conc. compared to the reference instrument in the range of 0.0 to ~300 µg/m³; accuracy is lower at the lower $PM_{1.0}$ and $PM_{2.5}$ concentrations tested (< 20 µg/m³). In general, the AS-LUNG Portable sensors underestimated $PM_{1.0}$ conc. and overestimated the $PM_{2.5}$ conc. as recorded by the reference instrument in the laboratory experiments.
- Precision: The AS-LUNG Portable sensors have high precision for all test combinations (all PM concentrations, T and RH).
- > Intra-model variability: Low intra-model variability was observed among the AS-LUNG Portable sensors.
- > Data Recovery: Data recovery for both $PM_{1.0}$ and $PM_{2.5}$ mass concentrations from all units was ~100%.
- Coefficient of Determination: The AS-LUNG Portable sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the AS-LUNG Portable's precision. The AS-LUNG Portable sensors showed some spikes at the set-points of RH changes, especially at the 65% RH set-point at low and medium PM concentrations.