Laboratory Evaluation
RTI – MicroPEM PM$_{2.5}$ Sensor
Background

• Three RTI MicroPEM PM sensors that were previously evaluated for their performance in the field (deployment period: 02/10/2015 - 04/14/2015), under ambient weather conditions, have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size, temperature and relative humidity conditions.

• RTI MicroPEM (3 units tested):
 ➢ Particulate Matter sensors (optical; non-FEM)*
 ➢ Each unit measures: PM$_{2.5}$ (μg/m3)
 ➢ Unit cost: ~$2,000
 ➢ Time resolution: 10 sec
 ➢ Units IDs: 60N, 65N, 72N

• GRIMM (reference method):
 ➢ Optical particle counter (FEM)
 ➢ Uses proprietary algorithms to calculate total PM, PM$_{2.5}$, and PM$_{1}$ from particle number measurements
 ➢ Cost: ~$25,000 and up
 ➢ Time resolution: 1 min

*The MicroPEM also allows for the collection of integrated PM$_{2.5}$ samples on a 25mm Teflon filter.
• Measurements from all three RTI MicroPEM sensors tracked very well the PM\textsubscript{2.5} (µg/m3) variations (concentration ramping) recorded by the FEM GRIMM instrument at 20 °C and 40% RH.

• However, the MicroPEMs largely overestimated (3 times) the FEM GRIMM PM\textsubscript{2.5} (slope = 0.31 and intercept = 9.41).
RTI MicroPEM vs FEM GRIMM (PM$_{2.5}$; 5-min mean)

- Accuracy (20 °C and 40% RH)

<table>
<thead>
<tr>
<th>Steady State (#)</th>
<th>Sensor mean (µg/m3)</th>
<th>FEM GRIMM (µg/m3)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.2</td>
<td>8.9</td>
<td>-27.0</td>
</tr>
<tr>
<td>2</td>
<td>50.1</td>
<td>19.8</td>
<td>-53.0</td>
</tr>
<tr>
<td>3</td>
<td>91.3</td>
<td>37.8</td>
<td>-41.5</td>
</tr>
<tr>
<td>4</td>
<td>379.1</td>
<td>139</td>
<td>-72.7</td>
</tr>
<tr>
<td>5</td>
<td>727.1</td>
<td>241.2</td>
<td>-101.5</td>
</tr>
</tbody>
</table>

- Overall, the three RTI MicroPEM units showed accuracy (from -27.0% to -101.5%) for different PM$_{2.5}$ mass concentration levels over the range of 0 – 240 µg/m3. Low accuracy and overestimation was observed for RTI units compared to FEM GRIMM at 20 °C and 40% RH.

RTI MicroPEM Data Recovery & Intra-model Variability

- Data recovery for PM$_{2.5}$ mass concentration from all three units was 100%.
- Low PM$_{2.5}$ measurement variations were observed between the three units.
RTI MicroPEM vs FEM GRIMM (PM$_{2.5}$; 5-min mean)

- Precision (Effect of PM$_{2.5}$ conc., Temperature and Relative Humidity)

 Low Conc. | Medium Conc. | High Conc.

 Overall, the three MicroPEMs and the FEM GRIMM showed high precision for almost all combinations of low, medium and high PM conc., temp and RH, except for the case of low temperature (5 °C) and high RH (65%) at all three PM concentration levels.

- FEM GRIMM precision was very high across all conditions.
RTI MicroPEM Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)
Accuracy: Overall, the three RTI MicroPEM units showed accuracy (from -27.0% to -101.5%) for different PM$_{2.5}$ mass concentration levels over the range of 0 – 240 µg/m3. Low accuracy and overestimation was observed for RTI units compared to FEM GRIMM at 20 °C and 40% RH. (refer to slide 4)

Precision: High precision for all test combinations except at 5 °C and 65% for low, medium and high PM$_{2.5}$ (refer to slide 5)

Intra-model Variability: Low PM$_{2.5}$ measurement variations were observed between the three units.

Data Recovery: Data recovery for PM$_{2.5}$ mass concentration from all three units was 100%.

Coefficient of determination: MicroPEM sensors show very strong correlation/linear response with the corresponding FEM GRIMM PM$_{2.5}$ measurement data ($R^2 = 0.99$) (refer to slide 3)

Climate susceptibility: From the lab studies, there is a clear and distinct Temperature and Relative Humidity effect on the sensor performance as this is realized by the PM$_{2.5}$ mass concentration measurement data both alone and relative to the corresponding FEM GRIMM data (refer to slides 6)