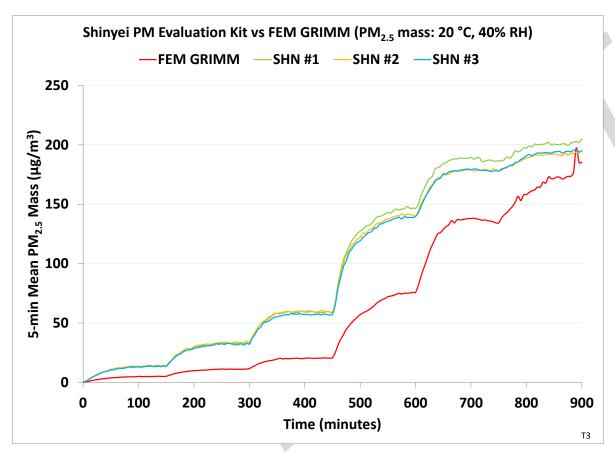
Laboratory Evaluation Shinyei Technology PM Sensor Evaluation Kit

Background

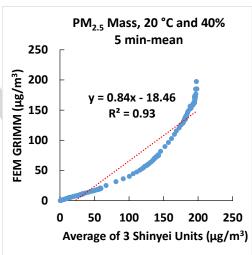
Three **Shinyei Technology - PM Sensor Evaluation Kit** units that were previously evaluated for their performance in the field (deployment period: 02/05/2015 to 04/08/2015) under ambient weather conditions, have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity conditions.

PM Sensor Eval Kit (3 units tested):

- ➤ Particle sensors (optical; non-FEM)
- ≻Each unit measures: PM_{2.5} (μg/m³)
- ➤ Unit cost: ~\$1,000
- ➤ Time resolution: 1-min
- ➤ Units IDs: SHN #1, SHN #2, SHN #3


GRIMM (reference method):

- ➤ Optical particle counter (FEM)
- ➤ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ from particle number measurements
- ➤ Cost: ~\$25,000 and up
- ➤ Time resolution: 1-min



Shinyei vs FEM GRIMM (PM_{2.5} mass; 5-min mean)

Over the full PM_{2.5} concentration range tested (0-200 μg/m³), the Shinyei units tracked well the diurnal variations as recorded by the FEM GRIMM.

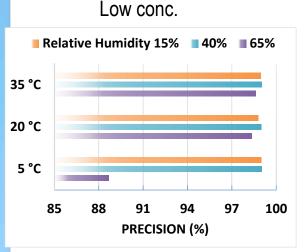
Coefficient of Determination

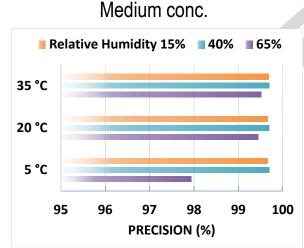
 Three Shinyei units showed very strong correlations with FEM GRIMM PM_{2.5} measurement data (R²~0.93) between 0-200 μg/m³. The Shinyei units overestimated the FEM GRIMM PM_{2.5} concentration.

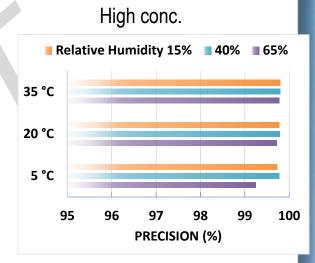
Shinyei PM Sensor Accuracy

Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (μg/m³)	FEM (μg/m³)	Accuracy (%)
1	13.8	5.1	-70.5
2	33.0	11.2	-94.6
3	58.6	20.6	-85.0
4	142.4	75.3	11.0
5	181.2	134.9	65.6
6	197.1	181.2	91.2

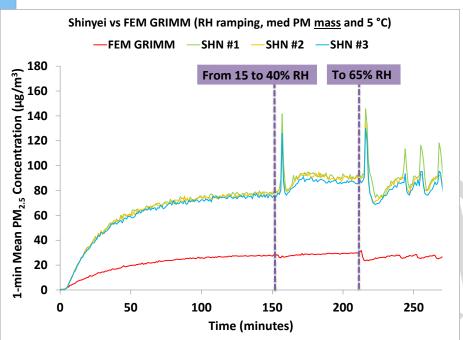

Overall, the three Shinyei units showed distinct accuracy (from -70.5% to 91.2%) for different PM_{2.5} mass concentration levels over the range of 0 – 180 μg/m³. Low accuracy and overestimation was observed at low PM concentration, when Shinyei units were compared to the FEM GRIMM at 20 °C and 40% RH.

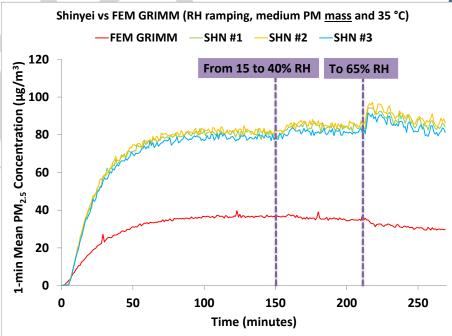

Shinyei Data Recovery & Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from all three units was 100%.
- Low PM_{2.5} measurement variations were observed between the three units.

Shinyei PM Sensor Precision

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)





- Overall, the three Shinyei units and the FEM GRIMM showed high precision for almost all combinations of low, medium and high PM conc., T, and RH.
- Only at 5 °C and high relative humidity of 65%, the precision was affected by the spiked values recorded by the Shinyei units.
- FEM GRIMM precision was very high across all conditions.

Shinyei PM Sensor Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- Accuracy: Overall, the three Shinyei units have low accuracy, compared to the FEM GRIMM for PM_{2.5} range 0.0 to 200 μg/m³. The three Shinyei units generally overestimated the PM_{2.5} mass measured by FEM GRIMM. (refer to slide 4).
- ▶ Precision: Shinyei units have high precision for almost all test combinations (PM_{2.5}, T and RH). (refer to slide 5), except for at 5 °C and high relative humidity where the precision was affected by the spiked values measured by Shinyei units.
- Intra-model variability: Low intra-model variability was observed among the three Shinyei units (slide 4).
- ▶ Data Recovery: Data recovery for PM_{2.5} mass concentration from all three Shinyei units was 100% (slide 4).
- Coefficient of Determination: Shinyei units showed very strong correlation/linear response with the corresponding FEM GRIMM PM_{2.5} measurement data (R²~0.93) for mass concentration range between 0 and 200 μg/m³ (refer to slides 3)
- ➤ Climate susceptibility: From the laboratory studies, temperature and relative humidity did not affect Shinyei units' precision in most cases. At 5 °C and 65% RH, Shinyei units reported spiked changes in PM_{2.5} concentrations, resulting into the lowest precision observed around 88%. (slide 5 and 6)