Laboratory Evaluation:
MagnaSCI SRL uRADMonitor
SMOGGIE-PM v1.101
Background

Three MagnaSCI SRL uRADMonitor SMOGGIE-PM v1.101 (hereinafter uRADMonitor SMOGGIE) sensors (units IDs: 0032, 0033, 0034) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (04/17/2020 to 6/27/2020) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three uRADMonitor SMOGGIE units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

uRADMonitor SMOGGIE (3 units tested):
- PM Sensor – Optical Particle Counter (Plantower PMSA003, non-FEM)
- Each unit measures: PM$_{1.0}$, PM$_{2.5}$ and PM$_{10}$ (μg/m3), T (°C), RH (%)
- Unit cost: $110
- Time resolution: 1-min
- Units IDs: 0032, 0033, 0034

GRIMM (reference method):
- Optical particle counter
- FEM PM$_{2.5}$
- Uses proprietary algorithms to calculate PM$_{1.0}$, PM$_{2.5}$, and PM$_{10}$ mass conc. from particle number measurements
- Cost: ~$25,000
- Time resolution: 1-min
Evaluation results for \(PM_{1.0} \) mass concentration

uRADMonitor SMOGGIE vs GRIMM
The uRADMonitor SMOGGIE sensors tracked well with the concentration variation as recorded by the GRIMM in the concentration range of 0 - ~200 μg/m³.

The uRADMonitor SMOGGIE sensors showed very strong correlations with the GRIMM PM\textsubscript{1.0} mass conc. (R2 > 0.99).
uRADMonitor SMOGGIE vs GRIMM PM\(_{1.0}\) Accuracy

- Accuracy (20°C and 40% RH)

<table>
<thead>
<tr>
<th>Steady state #</th>
<th>Sensor Mean (µg/m(^3))</th>
<th>GRIMM (µg/m(^3))</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
<td>7.5</td>
<td>24.1</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>12.9</td>
<td>24.4</td>
</tr>
<tr>
<td>3</td>
<td>11.4</td>
<td>39.6</td>
<td>28.8</td>
</tr>
<tr>
<td>4</td>
<td>26.6</td>
<td>114.1</td>
<td>23.4</td>
</tr>
<tr>
<td>5</td>
<td>47.8</td>
<td>185.5</td>
<td>25.7</td>
</tr>
</tbody>
</table>

- The uRADMonitor SMOGGIE sensors underestimated GRIMM PM\(_{1.0}\) mass concentrations at 20 °C and 40% RH. The accuracy of the uRADMonitor SMOGGIE sensors was fairly constant (~ 23% to 29%) over the range of PM\(_{1.0}\) mass concentrations tested.

uRADMonitor SMOGGIE: Data Recovery and Intra-model Variability

- Data recovery for PM\(_{1.0}\) mass concentration from all units was 100%
- Low PM\(_{1.0}\) measurement variations were observed between the uRADMonitor SMOGGIE sensors
uRADMonitor SMOGGIE vs GRIMM (PM$_{1.0}$; 1-min mean)

- Precision (Effect of PM$_{1.0}$ conc., Temperature and Relative Humidity)

- Overall, the uRADMonitor SMOGGIE sensors showed high precision for all combinations of low, medium and high PM$_{1.0}$ conc., T, and RH.

- Precision was relatively higher at higher PM$_{1.0}$ mass concentrations.
uRADMonitor SMOGGIE PM$_{1.0}$: Climate Susceptibility

uRADMonitor SMOGGIE vs GRIMM
(5 °C RH ramping, med PM$_{1.0}$ mass conc.)

From 15% to 40% RH 65% RH

High Temp – RH ramping (medium conc.)

Low Temp – RH ramping (medium conc.)
Evaluation results for PM$_{2.5}$ mass concentration

uRADMonitor SMOGGIE vs FEM GRIMM
The uRADMonitor SMOGGIE sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~250 μg/m³.

The uRADMonitor SMOGGIE sensors showed very strong correlations with the FEM GRIMM PM$_{2.5}$ mass conc. (R$^2 > 0.99$)
uRADMonitor SMOGGIE vs FEM GRIMM PM$_{2.5}$ Accuracy

- Accuracy (20°C and 40% RH)

<table>
<thead>
<tr>
<th>Steady state #</th>
<th>Sensor Mean (µg/m3)</th>
<th>FEM GRIMM (µg/m3)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.1</td>
<td>8.7</td>
<td>95.2</td>
</tr>
<tr>
<td>2</td>
<td>12.9</td>
<td>14.8</td>
<td>87.3</td>
</tr>
<tr>
<td>3</td>
<td>24.3</td>
<td>48.1</td>
<td>50.6</td>
</tr>
<tr>
<td>4</td>
<td>63.5</td>
<td>149.4</td>
<td>42.5</td>
</tr>
<tr>
<td>5</td>
<td>106.8</td>
<td>250.3</td>
<td>42.7</td>
</tr>
</tbody>
</table>

- The uRADMonitor SMOGGIE sensors underestimated FEM GRIMM PM$_{2.5}$ mass concentrations at 20 °C and 40% RH. The accuracy of the uRADMonitor SMOGGIE sensors decreased (from ~95% to 43%) as PM$_{2.5}$ mass concentrations increased.

uRADMonitor SMOGGIE: Data Recovery and Intra-model Variability

- Data recovery for PM$_{2.5}$ mass concentration from all units was 100%
- Low PM$_{2.5}$ measurement variations were observed between the uRADMonitor SMOGGIE sensors
uRADMonitor SMOGGIE vs FEM GRIMM (PM$_{2.5}$; 1-min mean)

- Precision (Effect of PM$_{2.5}$ conc., Temperature and Relative Humidity)

- Overall, the uRADMonitor SMOGGIE sensors showed high precision for all combinations of low, medium and high PM$_{2.5}$ conc., T, and RH.

- Precision was relatively higher at higher PM$_{2.5}$ mass concentrations.
uRADMonitor SMOGGIE vs PM$_{2.5}$: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)
Discussion

- **Accuracy**: Overall, the accuracy of the uRADMonitor SMOGGIE sensors was fairly constant (~ 23% to 29%) over the range of PM$_{1.0}$ mass concentrations tested; the accuracy decreased (from ~95% to 43%) as PM$_{2.5}$ mass concentrations increased. The uRADMonitor SMOGGIE sensors underestimated the corresponding PM$_{1.0}$ and PM$_{2.5}$ measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.

- **Precision**: The uRADMonitor SMOGGIE sensors showed high precision for all test combinations (PM concentrations, T and RH) for PM$_{1.0}$ and PM$_{2.5}$ mass concentrations.

- **Intra-model variability**: Low intra-model variability was observed among the uRADMonitor SMOGGIE sensors for PM$_{1.0}$ and PM$_{2.5}$ mass concentrations.

- **Data Recovery**: Data recovery for PM$_{1.0}$ and PM$_{2.5}$ mass concentration was 100% from all uRADMonitor SMOGGIE units.

- **Coefficient of Determination**: The uRADMonitor SMOGGIE sensors showed very strong correlation/linear response with the corresponding GRIMM PM$_{1.0}$ and FEM GRIMM PM$_{2.5}$ measurement data ($R^2 > 0.99$).

- **Climate susceptibility**: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the uRADMonitor SMOGGIE sensors’ precision; the sensors showed significant concentration variation at low PM levels.