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A B S T R A C T   

While large-scale low-cost sensor networks are now recording air pollutant concentrations at finer spatial and 
temporal scales than previously measured, the large environmental data sets generated by these sensor networks 
can become overwhelming when considering the scientific skills required to analyze the data and generate 
interpretable results. This paper summarizes the development of an open-source R package (AirSensor) and 
interactive web application (DataViewer) designed to address the environmental data science challenges of 
visualizing and understanding local air quality conditions with community networks of low-cost air quality 
sensors. AirSensor allows users to access historical data, add spatial metadata, and create maps and plots for 
viewing community monitoring data. The DataViewer application was developed to incorporate the functionality 
and plotting functions of the R package into a user-friendly web experience that would serve as the primary 
source for data communication for community-based organizations and citizen scientists.   

Software availability 

The AirSensor R-package version 0.5 was developed by Mazama 
Science and South Coast AQMD. AirSensor is Free and Open Source 
Software available through the GitHub repository [https://github. 
com/MazamaScience/AirSensor/tree/version-0.5]. Mazama Science 
maintains the package as part of its ongoing relationships with federal, 
state and local air quality agencies. AirSensor version 0.5 was first 
released in 2019 under General Public License v3.0 (GPL-3.0) and runs 
on Windows, Unix, and Macintosh operating systems. AirSensor was 
written in R and program files are less than 5 Mbytes. AirSensor is 
designed to be used with R (≥ 3.3) and RStudio. 

The DataViewer Shiny application was developed by Mazama Science 
and South Coast AQMD. DataViewer is Free and Open Source Software 
available through the GitHub repository [https://github.com/Mazam 
aScience/AirSensorShiny]. The DataViewer was first released in 2019 
under General Public License v3.0 (GPL-3.0) and runs on Windows, 
Unix, and Macintosh operating systems. DataViewer was written in R 
and program files are less than 7 Mbytes. The DataViewer requires Git, 
Apache, Docker, R, and R Shiny Server. 

1. Introduction 

A paradigm shift in air quality monitoring is occurring with citizen 
scientists able to develop hyper-local community monitoring networks 
to supplement the established regulatory monitoring networks that are 
designed for regional monitoring (Snyder et al., 2013). These environ
mental monitoring networks are increasing in complexity, size, and 
resolution (both spatial and temporal) due to technological advances 
and cost reductions for environmental monitoring hardware, connected 
Internet of Things (IoT) devices, and cloud computing. Citizen scientists 
can take an active role in monitoring air quality at the neighborhood 
level by installing low-cost air quality sensors (LCS) that collect and 
report air pollutant data. Particulate matter (PM) is an air pollutant that 
is categorized based on size with fine particulate matter (PM2.5) defined 
as particles with aerodynamic diameter less than 2.5 μm. The ability to 
record and visualize hyper-local data in an intuitive and informative 
interface will likely spawn an increase in interest and interaction with 
environmental data sets due to the locally relevant nature of the infor
mation. On the other hand, non-intuitive or limited user interfaces and 
confusing user experiences may discourage citizen scientists from 

* Corresponding author. 21865 Copley Dr. Diamond Bar, CA, 91765, USA. 
E-mail address: bfeenstra@aqmd.gov (B. Feenstra).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: http://www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2020.104832 
Accepted 6 August 2020   

https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensorShiny
https://github.com/MazamaScience/AirSensorShiny
mailto:bfeenstra@aqmd.gov
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2020.104832
https://doi.org/10.1016/j.envsoft.2020.104832
https://doi.org/10.1016/j.envsoft.2020.104832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2020.104832&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Environmental Modelling and Software 134 (2020) 104832

2

interacting with the collected data. The increasing complexity, size, and 
resolution of today’s environmental monitoring networks have created 
big data challenges leading to the emergence of a new field of study: 
Environmental Data Science (Gibert et al., 2018). Data science combines 
computer programming skills, math and statistical knowledge, and 
subject matter expertise (Conway, 2013). Free Open Source Software 
(FOSS) platforms play a vital role in the progress of research towards 
developing new methods for addressing environmental data science 
challenges. The R-environment and Python are two FOSS programing 
languages that are often used in environmental data science applications 
(Kadiyala and Kumar 2017a, 2017b). Open access to environmental data 
sets and related tools is foundational for environmental data science to 
thrive and develop. Environmental monitoring data can be considered 
open access when the data is available through a stable and consistent 
Application Programming Interface (API) that allows software and 
application developers to build applications to display and report that 
data in transparent and meaningful ways. 

Environmental data scientists can access regulatory data via open 
API’s (e.g., AirNow API, OpenAQ API) to create custom web applications 
for displaying air monitoring (AM) data (AirNow, 2020; OpenAQ, 
2020). These AM data viewing websites are useful and provide infor
mation to the public at varying granularity spatially and temporally. 
Two examples of data viewing websites include the OpenAQ map and 
the World’s Air Pollution: Real-time AQI (WAQI) map which both 
display international air quality monitoring data (OpenAQ, 2020; World 
Air Quality Index Project, 2020). OpenAQ uses a color scale (Fig. S1 in 
the Supplemental Information (SI)) that deviates from the common Air 
Quality Index (AQI) color scale to display air pollution concentrations. A 
special feature in the WAQI website is their use of calendar plots to 
display AM information. Data viewing websites that display modeled or 
interpolated air pollutant or AQI values are also available (BreezoMeter, 
2020; IQAir, 2020; Plume Labs, 2020). When displaying data from both 
regulatory-grade instruments and LCS, the source and type of data dis
played should be readily apparent. A lack of differentiating and identi
fying data sources may cause confusion for the end-user, especially if the 
LCS do not agree with nearby regulatory-grade instrumentation. With 
interpolated or modeled maps, often the user is not readily aware of the 
input parameters used to model air quality data. When viewing modeled 
air pollution information, the viewer should be cautious especially when 
data sources are not readily apparent and input parameters, whether 
defendable or questionable, for the data model are unknown to the 
end-user/viewer (Hagler et al., 2018). Broadly, the available sensor data 
viewing platforms are map-centric with point values or interpolated 
modeled data displayed with options for viewing recent time series data. 

Resources for accessing and displaying data collected from networks 
of LCS are available, though they vary in terms of software (FOSS or 
proprietary), what they provide, and whether they are provided by the 
manufacturer, a project team, or through a citizen science model. While 
many sensor manufacturers have software and platforms in place for 
ingesting, storing, and analyzing data that is generated from their 
respective sensors, these are often proprietary and offered as a Software 
as a Service (SaaS) or Platform as a Service (PaaS) requiring accounts 
with monthly or annual subscriptions costs. In contrast to the SaaS and 
PaaS business model, several sensor resources are available for open- 
access viewing of data collected from LCS networks. These platforms 
include but are not limited to the HabitatMap AirCasting map, Air 
Quality Egg Portal, Luft Daten project map, PurpleAir Map, Smart Citi
zen Kit Map, and the uRADMonitor Network map (Air Quality Egg, 
2020; HabitatMap, 2020; Luftdaten, 2020; PurpleAir, 2020; Smart Cit
izen Kit, 2020; uRADMonitor, 2020). PurpleAir provides open access to 
the data collected by the PurpleAir network of sensors through an API 
and provides open viewing and downloading of sensor data through the 
PurpleAir map. The Luft Daten project is a citizen science project with 
LCS reporting to a map and invites programmers to collaborate in this 
FOSS development through GitHub (OK Lab Stuttgart, 2020). When 
selecting a sensor in either the PurpleAir or Luftdaten GUI, the user is 

currently limited to viewing only the last seven days of data in a time 
series plot and current data on the map (accessed January 2020). To gain 
an understanding of the historical local AM data, the user is required to 
download, process, and visualize the data from these networks on their 
own, which may be a limiting factor to those without the environmental 
data science skills needed to perform such analysis. These sensor-specific 
online resources for viewing sensor data often do not include the regu
latory AM data that may be publicly available through the AirNow or 
OpenAQ API and often do not indicate what, if any, quality control (QC) 
measures are taking place on the collected data before displaying 
publicly. 

For community members to understand local air pollution trends, a 
more in-depth analysis of historical data is required. While map-centric 
GUIs work well for viewing real-time data, communities that monitor air 
quality in long-term deployments need additional plotting and viewing 
capabilities to access and understand their local historical AM data. A 
data dashboard for viewing and analyzing historical data would provide 
citizen scientist with a better understanding of local air pollution levels, 
particularly spatial and temporal air pollution trends. For those with 
varying levels of technical data science programming skills, several 
software resources are available that support individual data analysis of 
air quality data. If data can be organized and loaded into a software 
system, then a more in-depth analysis can occur, and custom visuali
zations can be produced. FOSS software packages have been developed 
in the R and Python environments specifically for accessing and visu
alizing freely available AM data. These include the R packages openair, 
PWFSLSmoke, ropenaq, and raqdm. OpenAir provides a useful package for 
developing visualizations from collected AM data with functions to 
create calendar plots, scatter plots, and time variation plots along with 
wind roses, pollution roses, and bivariate polar plots if wind speed and 
direction data is available (Carslaw and Ropkins, 2012; Carslaw and 
Beevers, 2013). 

If we use advanced analytical tools and access AM data directly, then 
we can facilitate more organized, robust, systematic, and repeatable 
data processing, analysis, and visualization of LCS data. Furthermore, 
using FOSS tools allows for increased iteration and development. An 
example of this workflow would be the PWFSLSmoke R package and the 
associated PM2.5 AM web application developed as part of the AirFire 
tools by the U.S. Forest Service (USFS) Wildland Fire Air Quality 
Response Program (WFAQRP) (Callahan et al., 2019; Air Fire Tools, 
2020). These tools were developed to access regulatory grade AM data 
via the AirNow API and display that data graphically to assist the USFS 
Air Resource Advisors to gather air quality data and create air quality 
reports during wildfire smoke events. The PWFSLSmoke R package 
provides functions to download, parse, and plot AM data and provides 
the back-end software necessary to generate plots for displaying on the 
front-end web application. A similar model in which an R-package is 
used for accessing and processing LCS data would save users time and 
would allow the development of custom functions for different ap
proaches to QC and more complex historical data analysis, which are 
gaps we see in the current offerings. Additionally, the R-package could 
provide the back-end software to support a front-end web application to 
display historical AM data to provide communities with more useful 
analysis and visualizations of historical data. This web application 
would allow community members to answer questions about their local 
environment, which are not readily answered with the current offerings 
of real-time maps with limited historical data analysis. 

The objectives of the software development associated with this 
project were to build an FOSS R package and data viewer web appli
cation that would address the challenges identified with the data man
agement and visualization of LCS networks deployed within the U.S. 
EPA Science To Achieve Results (STAR) grant project. This paper sum
marizes the development of an R package and web application designed 
to address the environmental data science challenges created by 
deploying 400+ LCS in 14 different communities. We wanted an open 
source R package that would allow users to download sensor data, add 
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spatial metadata, perform data fusion with other relevant data sets, and 
create maps and plots for viewing data collected by AM sensors. We also 
wanted the package designed with functions so that minimal coding 
would be required to complete tasks. Understanding that many would 
prefer to interact with an online web application, we wanted to build an 
application that would provide an interactive data experience allowing 
users to make selections and explore the community AM data sets by 
generating pre-defined data visuals based on their user input selections. 
The South Coast Air Quality Management District (South Coast AQMD) 
collaborated with Mazama Science to develop the R package AirSensor 
and web application AirSensor DataViewer (DataViewer) to meet these 
software development aims. 

2. Methods (Software design and characteristics) 

2.1. Community engagement 

In 2016, South Coast AQMD was awarded a U.S. EPA STAR grant, 
titled “Engage, Educate and Empower California Communities on the 
Use and Applications of ‘Low-cost’ Air Monitoring Sensors” under 
Assistance Agreement No. R836184. South Coast AQMD has engaged 14 
California communities through a series of workshops to introduce the 
project, provide technical guidance on sensor technology and deploy
ment (siting, installation, configuration, and registration) of air quality 
sensors, review deployment progress and examine community data sets, 
and provide software tools and resources for citizen scientists to engage 
with collected data sets and create informative data visualizations. 
Roughly 400 PurpleAir PA-II sensors (PurpleAir LLC, USA) were 
distributed to community members. The on-going engagement with the 
STAR Grant Sensor Communities (SGSC) has provided the motivation to 
develop software tools to enhance the community members’ ability to 
interact with historical data and extract meaningful information about 
their local environment. Participants were not engaging with the data 
that often (as is supported by the survey data, which is most respondents 
only check their air quality data “sometimes” - 36% as opposed to 
“often” - 17% and “everyday” - 5%). In person discussions provided 
useful context to help us understand this by (1) reporting that data was 
difficult to access and download (especially. historic data), and (2) 
sharing what they wished to do with the data. For example, after dis
playing a static time of day bar chart showing the diurnal PM2.5 trends 
during a community workshop, one community group leader asked, 
“How do I generate that plot on a regular basis and share with my 
community members?” In one SGSC, a sensor host wanted to know the 
best time of day to walk their dog to reduce their exposure to particulate 
pollution. Additionally, multiple participants from different commu
nities shared their difficulty downloading and analyzing the publicly 
accessible PA-II data especially with regards to the time/date refor
matting required for plotting in Microsoft Excel. The survey responses 
along with the discussions with community members on the data science 
challenges provided the motivation to build additional software tools to 
address the difficulty and challenges posed by analyzing these large 
community AM data sets. Increasing the number of data-sharing events 
with effective data visualizations should provide participants with a 
better understanding of the principles of air quality, their local air 
pollution, and the proper use and application of LCS (Sandhaus et al., 
2019). Table S1 in the SI provides a summary of the environmental data 
science challenges that are addressed in this project. 

2.2. Software tools (R environment, RStudio, R packages, and Shiny) 

The R environment is an integrated suite of software facilities that is 
designed on a simple yet effective computer programming language, R. 
The R environment provides tools and functions for data processing, 
storage, calculation, and graphical display. Since R is designed essen
tially on a computer programming language, users are able to add 
further functionality to existing packages by defining new functions and 

developing packages of functions (The R environment 2019). RStudio, a 
public benefit corporation, provides a FOSS version of an Integrated 
Development Environment (IDE) for R which supports code execution, 
debugging, and workspace management (RStudio, 2019; Allaire, 2020). 
Instructions for installing R and RStudio can be found on the web and in 
the literature (Kadiyala and Kumar 2017b). The fundamental unit of 
shareable code in R is a package. Packages bundle together R code, data, 
documentation, and tests. Packages are sharable on the Comprehensive 
R Archive Network (CRAN), which is the public clearing house for R 
packages. CRAN hosts a wide variety of FOSS packages that allow re
searchers to collaborate and build upon already developed R code. The 
development of AirSensor built upon R packages available on CRAN; 
most notably MazamaSpatialUtils, openair, PWFSLSmoke, and worldmet. 
AirSensor is designed to be used with R version ≥3.3. This paper de
scribes version 0.5 of the AirSensor package which is available on 
GitHub. The latest or master branch of AirSensor is also available on 
GitHub. The AirSensor package can be installed using the devtools 
package within R using the following code:

Shiny is a FOSS R package that provides a framework for building 
interactive web applications. Shiny allows the user to turn R derived 
analysis and plots into interactive web applications without requiring 
HTML, CSS, or JavaScript programming. Shiny allows for the develop
ment of a web application for viewing and sharing data analytics. Since 
not all users would be comfortable using the R environment which does 
require coding, R Shiny was used to develop the DataViewer web 
application to provide an interactive data experience for community 
members that would prefer to interact with the sensor data in a web 
application rather than in the R programming environment. 

2.3. AirSensor - R package 

Rather than describing each individual function in AirSensor, the 
following examples will showcase the three primary data objects 
available through the package, how to apply quality control measures on 
the imported data, and how to generate plots for each of the data objects. 
A complete guide to AirSensor functions and operations can be found 
within the R-environment after the package has been loaded. Helpful R 
vignettes are also available within the package to provide the user with 
code examples for using the AirSensor functions and working with the 
sensor data. 

2.3.1. Data access, extraction, and data objects overview 
AirSensor currently accesses data generated by PurpleAir sensors by 

collecting real-time data from www.purpleair.com/json and historical 
data from a ThingSpeak Representational State Transfer (REST) API. 
Extracted data is enhanced with spatial metadata and transformed into 
efficient data objects for downstream analytics. The three primary data 
objects are the Purple Air Synoptic (PAS), Purple Air Timeseries (PAT), 
and AirSensor (sensor) data objects. Functions exist for creating or 
loading data objects as well as manipulating and visualizing them. An 
overview of the AirSensor R package data access, data objects, and 
functions is provided in Fig. 1. After installing or loading the package, a 
data archive repository can be set to access archived data. Data archives 
can be created that for specific sensor networks (e.g. SGSC) or for a 
specific geographic area (e.g., Southern California) so that the R user can 
access and load historical data more efficiently from an archive rather 
than the ThingSpeak REST API. The data archives developed for the 
SGSC are kept current with cron jobs (cron jobs are time-based jobs that 
can run commands at specific time intervals) that are scheduled to run 
every hour to pull and add the most recent data to the archive. The data 
archive for the SGSC is accessible at http://smoke.mazamascience.com/ 
data/PurpleAir and includes historical data starting from October 01, 
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2017. A base archive can be set in AirSensor by the following code:

2.3.2. Purple Air Synoptic - Data object 
The Purple Air Synoptic (PAS) data object provides an instantaneous 

view of the measured values from a network of sensors. A PAS can be 
created from the JSON data available at www.purpleair.com/json or can 
be loaded by accessing a data archive (Fig. 1). At the time of this writing, 
the time resolution of the PA-II sensors is 120 s and therefore a new PAS 
data object would be available roughly every 120 s. The available 
functions for manipulating PAS data object include pas_filter(), pas_fil
terArea(), and pas_filterNear(). The PAS data can be plotted on a map to 
display the instantaneous data collected by the sensor network with the 
pas_leaflet() and pas_staticMap() functions. Fig. 2 shows a PAS data 
object displayed on an interactive map using the pas_leaflet() function 
which maps sensor locations and colors the locations according to AQI. 
The map is interactive in that the user can select an individual sensor 
and view the values recorded at that location for the time the PAS object 
was created. If a user is interested in loading specific states or air dis
tricts, the user can apply filters when generating the PAS data object. 
The leaflet map can be modified with options for map tiles, parameter 
displayed, and what type of sensors to display (i.e. inside or outside 
sensors). Fig. 2 was produced by the following two lines of code: 

2.3.3. Data fusion enhancements 
Data fusion with other relevant data sources provides benefits for 

custom analytics, for performing data quality checks, and for providing 
information on local weather conditions. Data fusion provides the 
ability to tell a more complete story about local air pollution by fusing 
collected sensor data with other publicly available data sets. AirSensor 
has been integrated with the PWFSLSmoke R package for access to reg
ulatory AM data via the AirNow API and integrated to the worldmet R 
package for access to the U.S. National Oceanic and Atmospheric 
Administration (NOAA) Integrated Surface Database for meteorological 
data (Callahan et al., 2019; Carslaw, 2019). These data fusion en
hancements provide the ability to generate comparison plots between a 
LCS and the nearest regulatory-grade instrument and allow for sensor 
data to be joined with nearest meteorological data so that wind roses, 
pollution roses, and bivariate polar plots can be generated to provide 
insights into local air pollution trends. Data fusion enhancements are 
performed on both the PAT and sensor data objects. 

2.3.4. Purple Air Timeseries (PAT) - Data object and quality control 
functions 

The PAT timeseries data object provides timeseries data on a per- 
sensor basis. Data manipulation functions for the PAT data object 
include filtering, sampling, and joining. A PAT can be loaded from a data 
archive using the pat_load() function or can be created from the Pur
pleAir ThingSpeak API with the pat_createNew() function. The code 

Fig. 1. Flow Chart for data flow and functionality of the AirSensor R package.  
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example below loads a PAT data object for a sensor in Seal Beach, CA 
that was deployed as part of the SGSC deployments. The PAT data object 
includes data from January 01 to December 31, 2018. Subsequent 
example code and plots displaying the AirSensor functions will be per
formed on this PAT data object or a filtered PAT data object created from 
the SCSB_20 sensor. The PAT data object can be loaded into the R 
environment and filtered by date with the following code:

PAT data objects can be processed for time averaging, QC algorithms, 
and outlier detection for removal or replacement. The user can create 
their own framework for applying QC functions depending on their 
project requirements. The pat_aggregate() function returns a data frame 
with aggregate statistics which are helpful for building out QC algo
rithms. The aggregate statistics include the mean, median, standard 
deviation, minimum, maximum, and count for the aggregate time period 
chosen. Note that the PA-II sensor node is manufactured with two 
identical OEM (original equipment manufacturer) PM sensors (model 
PMS 5003, Plantower, China) that report the same types and amounts of 
data and for reference purposes are labeled as channel A and channel B, 
respectively. For the paired channel A and B PM2.5 data columns, the 

pat_aggregate() function also returns the t-test statistic (based on an 
unpaired, two-sample student’s t-test), p-value, and degrees of freedom. 
Several built-in QC algorithms are available in AirSensor and are labeled 
as pat_qc, hourly_AB_01, and hourly_AB_02. The pat_qc function allows 
the user to perform a first-level QC check for values that are considered 
“out-of-spec” with regards to the manufacturer defined specifications for 
the acceptable ranges for PM2.5, temperature, and humidity. The Pur
pleAirQC_hourly_AB_00() function allows the user to perform an hourly 
average of the A and B sensor channels when sufficient sub-hourly data 
exists for both channels within an hour. The default min-count for sub- 
hourly data is set to 20 data points; requiring a data recovery for A and B 
channels >66% for the current time-resolution at 120-s. No further QC is 
applied with this function. Note that the PA-II’s time resolution has 
changed with firmware updates over time. As firmware updates have not 
been performed across the board simultaneously for all sensors in the 
PurpleAir network, the following dates are estimates for firmware re
leases and data resolution. Time resolution for data prior to February 
2017 is 20 s, from February 2017 to March 2017 is 40 s, from March 
2017 to May 2017 is 70 s, from May 2017 to May 2019 is 80 s, and data 
recorded after May 2019 is 120 s. The function Pur
pleAirQC_hourly_AB_01 allows the user to perform an hourly average of 
the A and B sensor when sufficient sub-hourly data exists and when data 
is considered statistically similar. Data is invalidated when (1) minimum 
count < 20 values, (2) when both the means of channels A and B are not 
statistically the same (two-sample t-test p-value < 1e− 4) and the mean 
difference between channels A and B is greater than 10 μg/m3, and (3) 
when the mean difference between A and B is greater than 20 μg/m3 for 
PM2.5 values less than 100 μg/m3. These conditions assume that the air 
entering the channel A and B sensors is the same and therefore the means 
of the two channel measurements should be statistically similar. When 
measurements from these sensor channels agree, the user can have 

Fig. 2. Interactive leaflet map created from a PAS data object.  
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higher confidence in the LCS air quality measurements and the subse
quent data averaging of the two -OEM sensors into one value. The two- 
sample t-test is a statistical technique to determine whether the differ
ence between two means is significant. The default settings of these QC 
checks can be modified to adjust the QC check to individual project 
requirements. Additionally, new QC functions can be created and Air
Sensor users are encouraged to create their own custom QC functions 
and submit these functions to be added to the AirSensor package through 
GitHub. The PurpleAirQC_validationPlot() function creates a series of 
timeseries plots for channel A and B, the difference between channel A 
and B, t-test p-value, min count, and the hourly averaged final output 
(Fig. 3). 

The AirSensor pat_outlier() function provides an outlier detection 
function that allows the user to apply a rolling Hampel filter to identify 
points that may be outliers, and if desired, replace those identified 
outliers with a rolling median value. The Hampel Filter is an outlier 
detection technique that uses the Median Absolute Deviation (MAD). For 
each data point, a median and standard deviation are calculated using 
neighborhood values within a sample window size. If the MAD of a 
single data point is a specified number of standard deviations (threshold 
minimum) from the median value for the sample window, then the data 
point is flagged as an outlier. The default values for the pat_outlier() 
function set the sample window = 23 and the threshold minimum = 8. 
Adjusting the default parameters on the function for identifying outliers 
would adjust the number of points detected as outliers. Fig. 4 provides 
an example of the pat_outlier function with the potential outliers 

identified as red asterisks. In this example, a date filter was applied to 
the pat_example previously generated to only include the June 27 to 
July 8, 2018 time period that would be impacted by a special event: 4th 
of July fireworks. The outlier detection function appears to identify 
many of the one-off high values as outliers but does not consider the 
elevated PM2.5 concentrations due to the fireworks to be outliers. This 
function allows AirSensor data users to quickly implement an outlier 
detection technique and visualize the results of their outlier detection 
function. Fig. 4 was produced by the following R-code:

Data visualization functions for the PAT include plotting raw data 
time series, interactive time series, multiplot time series (A, B, Temp, 
RH), comparison plot for channel A vs. B, and a comparison plot with 
regard to the nearest regulatory PM2.5 monitor. The channel A and B 
PM2.5 timeseries data can be compared using the pat_interalFit() func
tion as shown in Fig. 5. For SCSB_20, the A and B sensors agree with each 
other with an R2 > 0.98, slope of 1.05, and an intercept of − 0.8. Since 
the two sensors perform similarly for 2018-time frame, the blue times
eries points representing the B sensor are plotted over top of the red 
points representing the A sensor. The code to generate the plot is: 

The pat_scatterplot function provides a multi-panel scatterplot for 
variables in the PAT data object with an example of the plot shown in 
Fig. 6. This plot allows the researcher to determine if there is a lack of 
correlation between the A and B sensor channels or if there are higher 
than expected correlations between PM2.5 concentrations and weather 

Fig. 3. Plot generated to visualize the QC_01 algorithm for SCSB_20 located in Seal Beach, CA. A/B separate provides a timeseries plot for channel A and B; A/B 
difference provides a timeseries of the mean difference between the A and B channels; t-test p-value provides a timeseries of the p-value statistic between the two 
channels; A/B minimum count provides the minimum count of data points in 1-hr for the A and B channels; and hourly_AB_01 provides the 1-hr quality controlled 
average data processed with the hourly_AB_01 function. 
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conditions (temperature and humidity). This plot also provides the 
timeseries and distribution of data points for PM, temperature and hu
midity. In Fig. 6, the distribution plots for the A and B sensor channels 
indicate PM2.5 concentrations for this sensor are typically less than 25 
μg/m3. The datetime column provides an indication of periods of 

downtime with a noticeable downtime seen in August and September of 
2018. 

A sensor can also be compared to the nearest regulatory air moni
toring station (AMS) with the pat_externalFit() function (Fig. 7). In this 
example, the sensor is 3.1 km away from the regulatory AMS equipped 

Fig. 4. Plot generated with the rolling Hampel filter identifying potential outliers in red asterisks for SCSB_20 from June 27 to July 08, 2018. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Scatter plot and timeseries rendered using the pat_internalFit function to compare channel A and B within a single PA-II sensor, SCSB_20, for 2018.  
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with a Met One Beta Attenuation Monitor (BAM), which is a U.S. EPA 
designated Class III FEM (EQPM-0308-170) for PM2.5. The time resolu
tion of the regulatory PM2.5 data is hourly. To match LCS data with the 
regulatory data, this function uses the QC procedures previously 
described to hourly aggregate the sensor data. The user can specify 
which QC algorithm to apply or create custom QC functions. Fig. 7 in
dicates that while the sensor follows the typical daily PM2.5 trends of the 

nearby regulatory-grade instrument for PM2.5 with R2 > 0.73, the sensor 
tends to estimate higher concentrations than the regulatory-grade in
strument. This slope/intercept offset could be due to a local emission 
source impacting this particular sensor location or could be due to 
sensor measurement bias error that has been identified in prior publi
cations (Feenstra et al., 2019; Magi et al., 2019). For the time-series in 
Fig. 7, the purple colored points represent the 1-hr PurpleAir sensor data 

Fig. 6. Plot generated using the pat_scatterplot function to graphically view the variables in the PAT timeseries data object.  

Fig. 7. Scatter plot and timeseries plot rendered using the pat_externalFit() function which compares the PA-II sensor, SCSB_20, in Seal Beach, CA to a nearby 
regulatory-grade PM2.5 instrument in Long Beach, CA. 
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and the black colored points represent the regulatory-grade instrument 
data. If the two agree closely within an hour, the black point would be 
plotted on top of the purple point for that hour. The plot in Fig. 7 is 
created with the following:

The pat_dygraph function returns an interactive time-series plot for 
both channel A and B allowing the user to zoom in/out and investigate 
date/times when PM2.5 concentrations may be higher than normal 
(Fig. 8). Using the interactive time-slider located below the plot allows 
the user to quickly zoom in to further investigate dates and times with 
particle pollution events. With a small amount of code, the dygraph 
provides a versatile, interactive plot, where the user can explore a large 
amount of data at customizable levels with the time slider and zoom in/ 
out features. Fig. 8 is created with the following:

2.3.5. Hourly QC data object (sensor) 
The sensor data object is generated on a per sensor basis from a PAT 

data object with the pat_createAirSensor() function. The user will need 
to specify a PAT data object, time averaging period, parameter, channel, 
QC algorithm, and minimum count. The QC algorithms applied in 
creating the sensor data object are described earlier in Section 2.2.4 with 
regards to the QC functions that can be applied to a PAT timeseries data 
object. The functions for sensor data objects begin with “sensor_”. An 
example creating a sensor data object is shown in the code below:

Plots available for the sensor data object within the AirSensor package 
include a bivariate polar plot and pollution rose, which wrap functions 
from the openair R package. The meteorological data used to generate 

these plots is retrieved from the NOAA worldmet R package. The bivar
iate polar plot and pollution rose, which are shown in Fig. 9 and Fig. 10 
respectively, provide the user with the ability to couple wind direction 
and wind speed with PM2.5 pollutant data to determine whether pollu
tion events can be attributed to specific meteorological conditions and 
potentially identify pollution sources. A more in-depth analysis of these 
plots and their application in analyzing AM datasets is accessible within 
the published literature on the ‘open-air’ R package development (Car
slaw and Ropkins, 2012) and use of bivariate polar plots (Carslaw and 
Beevers, 2013; Grange et al., 2016). The pollution rose and polar plot are 
generated by the following code: 

2.3.6. Timestamp and time averaging for AirSensor data objects and 
functions 

AirSensor and AirSensor functions have been designed to appropri
ately handle timestamps and various time zones of potential users. Users 
should understand how time stamps are stored and visualized within 
AirSensor and take appropriate steps when creating and visualizing 
AirSensor data objects; especially if using plotting functions outside of 
the AirSensor package to visualize data. The PurpleAir API provides 
access to data stored in Coordinated Universal Time (UTC). The Air
Sensor data objects (PAS, PAT, and sensor) all store data with a UTC 
timestamp. When creating or loading either a PAT or a sensor data ob
jects, the user can specify the local time zone of the sensor selected. If a 
time zone is not specified when creating a data object for a single day, 
the date/time parameters will be passed as UTC, which for a sensor 
located in the Pacific Time Zone (+8h UTC) would return a data object 
with data from 08:00 AM to 08:00 AM local time of the following day. In 
AirSensor, time stamps are labeled and time averages are coded as “time 
beginning”. For example, a 1-hr time average with a timestamp of 14:00 
would be an average of the data collected between 14:00 and 14:59. This 
holds true even with the 2-min time-matched channel A and B sensor 
data available in AirSensor. The PurpleAir PA-II channel A and B sensors 
report at different times within a 120-sec time interval. In AirSensor, the 
seconds are dropped and data from the A and B sensor are assigned to a 
2-min time beginning time stamp for matching purposes between the 
two OEM sensors within a PA-II sensor. Since data is stored as UTC, the 
plotting functions within AirSensor are coded to appropriately apply 
time shifts based on the sensor’s location (time zone) so that data will be 
plotted and displayed in the local time of that sensor’s location. 

Fig. 8. Dygraph plot with interactive time-slider generated by the pat_dygraph function.  
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2.4. AirSensor DataViewer web application 

2.4.1. AirSensor DataViewer overview 
The DataViewer application was developed to provide an online 

interactive data experience for the SGSC networks. These communities 
and sensor names are listed in SI Table S2. This interactive web appli
cation provides access to the functionality of the AirSensor R package. 
Citizen scientists that would not be able to download R and run code or 
scripts to access, process, and visualize community data are now able to 
visualize their community data through the DataViewer. While the 
infrastructure to generate the types of plots that had resonated with 
community group members during the workshops was developed in the 
AirSensor package, the ability for community group members to use that 
infrastructure and generate visualizations in an interactive web appli
cation without writing a single piece of code is provided in the Data
Viewer application. Plots that generated the most interest with 
community group members, including calendar plots, concentration 
maps, community time-lapse videos, and sensor performance plots be
tween the A and B internal sensors and between the sensor and nearest 
reference PM2.5 monitor, were prioritized for incorporation in the 
DataViewer. The following sections will provide an overview of the back- 
end infrastructure required for the DataViewer application and the 
methodology for the DataViewer color scale and timelapse videos. The 
front-end of the DataViewer, which is the online web application and the 
primary point of interaction for community members, is highlighted in 
the results section. 

2.4.2. Cloud computing resources 
Cloud computing provides computing services over the internet 

using a pay-as-you-go pricing model. Computing services typically 
include computing power, storage, networking, and analytics. Cloud 
computing can provide benefits by allowing programmers to focus on 
building new and innovative applications rather than acquiring and 
maintaining the infrastructure required for their computational needs. 
The cloud can provide benefits with cost reductions for IT infrastructure 
and can increase the scalability, elasticity, reliability, and security of 
computational services in comparison to computation services provi
sioned locally or on-premise. Azure, which is Microsoft’s public cloud 
computing platform, was used to support the computational re
quirements of the DataViewer application. The application could also be 
run on another public cloud platform or on premise if desired. The 
computation services required include running scheduled tasks (cron 
jobs) for creating data objects, storing data in structured data di
rectories, and hosting the DataViewer application. The data archive 
consists of a set of flat files defined by a simple directory and naming 
protocol with the data ingest scripts written in the R programming 
language. A virtual machine (VM) was configured on Azure with the 
structured directories for the data directories along with required soft
ware (i.e., Git, Apache, Docker, and R). A second VM was configured to 
host the DataViewer application. Fig. 11 provides a simplified system 
architecture for the DataViewer application. 

Fig. 9. PM2.5 Pollution Rose generated by the sensorpollutionRose() function for SCSB_20 located in Seal Beach, CA for June 27 to July 08, 2018.  
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2.4.3. DataViewer color scale 
Determining an appropriate color scale for pollutant concentrations 

generated by LCS is challenging. Historically, air quality has been 
colored according to the AQI with values ranging from 0 to 500 with six 
distinct color categories; good (green), moderate (yellow), unhealthy for 
sensitive groups (orange), unhealthy (red), very unhealthy (purple), and 
hazardous (maroon). Historically, AQI has been calculated at 24-h av
erages due to the scientific information about air pollution exposure and 
public health. In 2013, the U.S. EPA released a new AQI calculation 
method (NowCast Reff method) for PM2.5 that calculates AQI hourly 
based on the previous 12 h with the most recent hourly pollutant con
centrations given larger weighting when air quality is changing rapidly 
(Mintz et al., 2013). The U.S. EPA in the Air Sensor Toolbox suggested a 
new pilot version color/concentration scale that could be used for 1-min 
high time resolution data from LCS (U.S. Environmental Protection 
Agency, 2019). This scale uses four shades of blue for low, medium, 
high, and very high PM2.5 concentrations and is shown in SI Fig. S2. The 
scale from the AirSensor Toolbox was created for 1-min sensor data in 
contrast to this work in which LCS data is processed with QC algorithms 
and time-averaged to 1-hr concentrations prior to being displayed in the 
DataViewer application. Furthermore, the authors wanted to provide 

users with a clearer differentiation among the higher pollutant levels 
sometimes indicated by the sensors. Hence, a new color scheme was 
developed for the DataViewer that includes 5 concentration categories 
represented by two colors (blue and purple) with variations in the hue 
and luminance as shown in Table 1. 

2.4.4. FF MPEG and digital stills and video stills creation 
One of the desires of the community groups was to view historical 

time-lapse concentration maps to view past air quality events in their 
communities. To accomplish this task, cron jobs run hourly to create 
video still images for each of the 14 SGSC. These images are stored in the 
structured data directory in sequence and converted into mp4 video files 
using FFmpeg, which is a FOSS (Dawes, 2019; FFmpeg, 2019). 

3. Results 

3.1. AirSensor package 

The AirSensor R package meets the community needs for those 
desiring to work with PurpleAir LCS data programmatically in the R 
environment. Through the AirSensor package, real-time and historical 

Fig. 10. PM2.5 Bivariate Polar Plot generated by the sensorpolarPlot() function for SCSB_20 located in Seal Beach, CA for June 27 to July 08, 2018.  
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data from the SGSC (listed in SI Table S2) can be accessed, loaded into R, 
and visualized used pre-built plotting functions. These plotting functions 
allow the user to create useful and interactive plots that can be shared 
within a community group and deliver actionable information for the 
community members to answer questions like “When is particle pollu
tion highest in my community?” and “What time of day or day of week 
would be best to plan an outdoor activity (i.e. walk dog or golf game) to 
potentially reduce my particle pollution exposure?” AirSensor creates a 
data flow for the end-user to create data objects for synoptic data, time- 
series data, and QC hourly PM2.5 data. With the functions of this R 
package highlighted in the methods section, the user can easily create 
informative plots for community members to understand their local 
historical air quality trends with minimal coding required. The AirSensor 
R package and associated functions provide the necessary back-end 
software analysis and plotting functions to create the front-end Data
Viewer web application. The DataViewer is usable and useful to a much 
broader segment of the public and is the primary point of interaction for 
community members to gain insights into their local air quality 

conditions. This solution provides an example of how these types of tools 
and solutions can enhance public engagement with data from LCS 
networks. 

3.2. DataViewer application 

3.2.1. User interface: Tabular structure and plotting features 
The DataViewer application, version 0.9.7, has a hierarchical page 

and tab structure with 4 top-level pages: Explore, View Data, Latest 
Data, and About. The View Data page is for viewing tabled data and 
provides the ability to download data in 3 to 30-day intervals on a per 
sensor basis. For SGSC, historical data can be accessed back to the start 
of the SGSC deployments: October 01, 2017. The View Data page in
cludes high resolution (2-min) time-matched PA-II PM2.5 data from the 
A and B sensor channels, temperature (◦F), and relative humidity (%). 
This data output provides the user with a clean time-matched data set for 
the A and B sensor. Creating a similar data set outside of the AirSensor R 
package or DataViewer application would likely be time consuming and 
difficult; especially if the user were not proficient with Microsoft Excel 
or data science environments. The Latest Data page provides visual ac
cess to the latest non-QC data on a per sensor basis with timeseries plots 
provided for sensor channel A, channel B, humidity, and temperature. 
The “About” page provides an overview of the DataViewer, its intended 
purpose, QC procedures, and a disclaimer message. 

3.2.2. Explore page: Tabs and functionality 
The Explore page has the most functionality for exploring and 

analyzing community AM data and includes six tabs: Overview, Calen
dar, Raw Data, Daily Patterns, Compare, and Timelapse. In the Overview 
tab, the user can select a community, a single sensor (sensor name), a 
date (end date), and view past data with options for viewing the prior 3, 
7, 15, or 30 days to the selected end date. The Overview tab (Fig. 12) 
provides a map that displays the average PM2.5 for all sensors within the 
selected community for the time period selected (3, 7, 15, or 30-day 
average) and a bar chart that displays hourly PM2.5 concentrations for 
the selected sensor. This overview tab provides the user with access to 
historical pollutant concentrations for the user-selected timeframe for 
their community and individual sensor. By changing the date, the user 
can quickly identify spatial differences between locations since the map 
indicates an average PM2.5 concentration for the entire timeframe 

Fig. 11. System architecture for the DataViewer application.  

Table 1 
DataViewer color/concentration scale for 1-Hr PM2.5 
concentrations. 
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chosen (3–30 days). Additionally, the user can quickly scan the bar chart 
for when higher than typical PM2.5 concentrations were recorded for a 
particular sensor. 

In the Calendar tab, a 1-year calendar plot is rendered for a single 

selected sensor. The user selects a community, sensor, and date with a 
calendar plot being generated for the entire calendar year of the date 
selected (Fig. 13). The calendar plot is interactive and when the user 
hovers over a date, the 24-Hr averaged PM2.5 concentration is displayed. 

Fig. 12. Overview tab in the DataViewer application showing PM2.5 concentrations and sensor locations for Seal Beach, CA.  

Fig. 13. Calendar Plot generated using the AirSensor DataViewer Application. The darker shades indicate higher levels of pollution as set forth in the color scale 
provided in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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The calendar plot is easily understood by community members and 
provides an intuitive view of a complete year of PM2.5 data for a single 
sensor. The calendar tab is great place to start when exploring a com
munity data set to find dates with atypical 24-hr PM2.5 concentrations. 
The user can then further examine these atypical pollution events at 
higher time resolution with other tabs available within the Explore page. 
The calendar plot especially resonated with the community members 
and sensor hosts; and therefore, was a priority for inclusion in the 
DataViewer application. Calculating and rendering the calendar plot is 
computationally expensive and may take a few moments to display 
when interacting with the DataViewer application, but the result is well 
worth the wait for this informative plot. Throughout the workshops, we 
received the most feedback and discussion from community members 
when showing the calendar plot. The calendar plot triggered the audi
ence and facilitated effective discussions during community workshops. 
Community members who would be more silent or could not recall as to 
what might have caused poor air quality in their community during the 
past several months, were able to identify days with poor air quality and 
what might have caused them when they viewed the calendar plot with 
the color-coded concentrations. 

The Raw Data tab provides the raw time-series data for channels A 
and B, humidity, and temperature. Below the time series plots, the Raw 
Data tab provides a comparison between the channel A and B sensors 
with both a time-series and a scatterplot that indicates the regression 
statistics between the channel A and B. This functionality uses the 
pat_internalfit() function from the AirSensor R package which was pre
viously shown in Fig. 5. These comparison plots provide the user with 
the ability to check on the performance of an individual sensor by 
viewing how well the two internal raw sensors within the PA-II agree for 

the selected time period. If a user is concerned with the performance of 
an individual sensor, this tab can be used to determine if both the raw 
sensors are responding to changes in particle concentrations similarly. 
Low correlation and/or a large slope/intercept offset are indicative of a 
sensor performance issue and that one or both sensors may be experi
encing a malfunction. 

The Daily Patterns tab (Fig. 14) provides a bar chart illustrating the 
diurnal trend for PM2.5, a pollution rose, and a summary table for the 
NOAA weather data for the date range selected. The daily patterns bar 
chart provides the average concentration by hour of day. With this tab, 
the DataViewer user can determine on average what hour of the day has 
the highest and lowest particle pollution. This plot helps to inform users 
as to historical trends within their community and provides information 
that the community member can infer what time of day may be best for 
scheduling physical activity to reduce particle pollution exposure based 
on historical air pollution trend data. The pollution rose allows the user 
to determine if pollution can be attributed to specific meteorological 
conditions. 

The Compare tab provides a comparison between the sensor data and 
the nearest AMS equipped with a continuous regulatory PM2.5 instru
ment. The Compare tab provides a map indicating the location of the 
sensor and nearest AMS along with a timeseries and scatter plot com
parison for the two data sources, allowing the user to determine if the 
selected sensor follows the typical trends for PM2.5 recorded at the 
nearby regulatory AMS for the date range selected. The DataViewer 
application is using the AirSensor pat_externalfit() plotting function 
which was shown prior in Fig. 7. While the distance between the regu
latory monitor and the LCS is provided on the Sensor-Monitor Com
parison timeseries plot, the map provided in the DataViewer on this tab 

Fig. 14. Snapshot of the Daily Patterns tab in the DataViewer application.  

B. Feenstra et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 134 (2020) 104832

15

allows the user the opportunity to visualize the distance between and the 
spatial context of the two monitoring locations. Understanding the siting 
of the LCS and the regulatory AMS is crucial to understanding the in
formation provided by the comparison plot. If either the sensor or reg
ulatory monitor is installed in a near-source environment (i.e. near- 
road), the user should not expect the two measurements to agree. 

The final tab in the Explore page is the Timelapse tab. This tab 
provides the user with the ability to generate a 6-day timelapse PM2.5 
concentration video on a per community basis (Fig. 15). Right-clicking 
on the video allows the user to save a MP4 video to their computer 
and share if desired. This timelapse concentration map allows the user to 
view pollution events that may have taken place within a community 
during a selected time frame and visualize the flow of pollutants through 
a community. An informative approach to using this timelapse video is 
first to use the calendar plot feature to identify dates with elevated PM2.5 
mass concentrations (μg/m3). After identifying those dates, the user can 
then choose an inclusive date range to view the community timelapse to 
better understand the pollution event. 

4. Discussion 

While online systems exist to view real-time and recently recorded 
measurements, FOSS tools for accessing, processing, and analyzing 
historical AM data collected by LCS are less available to the public. 
Developing FOSS tools for archiving, interpreting, and communicating 
data from sensors has been identified as a concrete next step towards 
building a system for filling the air quality data gap (Pinder et al., 2019). 
This work provides a FOSS R package and a web application designed to 
fill that gap by providing the software tools to view both real-time and 
historical hyper-local air quality information generated by LCS net
works. Access to hyper-local air quality information is expected to 
spawn an increased desire to interact with air quality information and 
allow community members to take appropriate actions based on results 
generated from their community monitoring networks. The AirSensor R 
package and DataViewer application provide a framework and data flow 
for communities to transform their community monitoring data sets into 
insightful information through interactive data experiences and data 
explorations. When meaningful results and observations are formulated, 

community members can take appropriate actions to reduce their 
exposure to air pollutants. These actions could include planning trans
portation (e.g., walk, bike, motor vehicle) routes to reduce air pollution 
exposure and scheduling physical activity events (e.g., golf game, 
sporting practice, sporting event) during hours of the day or day of the 
week that have been identified to have lower PM2.5 pollution based on 
historical data analysis. Our experience with sharing the DataViewer 
with the community leaders and members participating in the project 
has been positive with users enjoying the interactive data experience 
provided within the DataViewer. These community members have 
shared how this DataViewer provides them with the analysis capabilities 
to better understand their local air quality conditions. Plots that previ
ously seemed out of reach due to required technical data analysis skills 
and coding experience are now readily available and generated with 
only a few selections and mouse clicks within the DataViewer 
application. 

FOSS software developments provide efficiency by building a com
munity of proactive data users around shared tools and allowing for 
multiple parties (i.e. agencies, entities, individuals) to contribute to 
software development and enhancing software functionalities. This 
benefit has already been realized as with the USFS AirFire group funding 
further developments to AirSensor for functions to calculate state-of- 
health metrics designed to categorize whether sensors are functioning 
properly. This information will be used in the context of wildfire air 
quality response. FOSS allows for researchers to collaborate and build 
upon the foundation established in this development. FOSS de
velopments can also provide a high level of transparency in terms of data 
analysis and integrity as the end-user is able to select which post- 
processing steps are appropriate for their data analysis. With FOSS 
tools and publicly available data sets, researchers can reproduce data 
analysis techniques and develop additional functions with the interop
erability associated with FOSS development. 

5. Conclusions 

This novel work brings these software systems to the end-users or 
community members in a FOSS format with all the advantages of open 
software developments. Not only is the end-user able to access, process, 

Fig. 15. Community timelapse video tab.  
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and analyze historical sensor data, but the user also has access to the 
source code and functions with the option to create their own custom 
functions for QC, filters, and advanced analytics. Allowing the com
munity to build upon this existing work provides benefits to the sensing 
community as a whole. Developing this software in the R-environment 
also provides for data fusion enrichment by coupling the collected AM 
sensor data with meteorological data and regulatory AM data through 
other open-source packages in the R environment. The AirSensor pack
age has established a foundation upon which further enhancements and 
refinements can be developed. Both AirSensor and DataViewer source 
codes are available on Github and the authors invite collaboration and 
input to help shape the AirSensor open source project to best meet the 
needs of the air sensing community. 

The AirSensor R package is sensor specific, working with any publicly 
registered Purple Air PA-II sensors. The DataViewer solution is both 
sensor- and project-specific and therefore limited to the PA-II sensors 
deployed by South Coast AQMD in SGSC. The authors believe that the 
data flow works well for AM sensor data with the data objects going from 
synoptic data to time-series data and then to hourly QC sensor data. The 
blueprint developed to make the DataViewer operational could be 
applied to other projects and communities to visualize data collected by 
their PurpleAir LCS networks. The work discussed in this paper focused 
on the initial data handling and analysis capabilities required for a 
community AM network of PM2.5 sensors. Planned future work will 
focus on several improvements to the AirSensor R package, the data 
archive database design, and the DataViewer application. The AirSensor 
R package and archive will be improved by adding functionality to 
handle unique timeseries identifiers and incorporating PM1 and PM10 
data. Additional plotting functionality will include enhancements to 
create multi-sensor comparison plots and visualize sensor state-of-health 
metrics for both individual sensors and sensor networks. Additional 
enhancements to the R package may include developing models to 
provide hyper local air quality forecast for the community. The Data
Viewer will be enhanced by improving the appearance, usability, data 
handling, and performance of the application. 
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