
Environmental Modelling and Software 134 (2020) 104832

Available online 25 August 2020
1364-8152/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The AirSensor open-source R-package and DataViewer web application for
interpreting community data collected by low-cost sensor networks

Brandon Feenstra a,b,c,*, Ashley Collier-Oxandale a, Vasileios Papapostolou a, David Cocker b,c,
Andrea Polidori a

a South Coast Air Quality Management District, Air Quality Sensor Performance Evaluation Center (AQ-SPEC), Diamond Bar, CA, 91765, USA
b University of California - Riverside, Department of Chemical & Environmental Engineering, Riverside, CA, 92521, USA
c University of California - Riverside, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA, 92521, USA

A R T I C L E I N F O

Keywords:
Community air monitoring
Citizen scientist
Low-cost air quality sensor
Open-source R package
Particulate matter PM2.5
Data interpretation

A B S T R A C T

While large-scale low-cost sensor networks are now recording air pollutant concentrations at finer spatial and
temporal scales than previously measured, the large environmental data sets generated by these sensor networks
can become overwhelming when considering the scientific skills required to analyze the data and generate
interpretable results. This paper summarizes the development of an open-source R package (AirSensor) and
interactive web application (DataViewer) designed to address the environmental data science challenges of
visualizing and understanding local air quality conditions with community networks of low-cost air quality
sensors. AirSensor allows users to access historical data, add spatial metadata, and create maps and plots for
viewing community monitoring data. The DataViewer application was developed to incorporate the functionality
and plotting functions of the R package into a user-friendly web experience that would serve as the primary
source for data communication for community-based organizations and citizen scientists.

Software availability

The AirSensor R-package version 0.5 was developed by Mazama
Science and South Coast AQMD. AirSensor is Free and Open Source
Software available through the GitHub repository [https://github.
com/MazamaScience/AirSensor/tree/version-0.5]. Mazama Science
maintains the package as part of its ongoing relationships with federal,
state and local air quality agencies. AirSensor version 0.5 was first
released in 2019 under General Public License v3.0 (GPL-3.0) and runs
on Windows, Unix, and Macintosh operating systems. AirSensor was
written in R and program files are less than 5 Mbytes. AirSensor is
designed to be used with R (≥ 3.3) and RStudio.

The DataViewer Shiny application was developed by Mazama Science
and South Coast AQMD. DataViewer is Free and Open Source Software
available through the GitHub repository [https://github.com/Mazam
aScience/AirSensorShiny]. The DataViewer was first released in 2019
under General Public License v3.0 (GPL-3.0) and runs on Windows,
Unix, and Macintosh operating systems. DataViewer was written in R
and program files are less than 7 Mbytes. The DataViewer requires Git,
Apache, Docker, R, and R Shiny Server.

1. Introduction

A paradigm shift in air quality monitoring is occurring with citizen
scientists able to develop hyper-local community monitoring networks
to supplement the established regulatory monitoring networks that are
designed for regional monitoring (Snyder et al., 2013). These environ
mental monitoring networks are increasing in complexity, size, and
resolution (both spatial and temporal) due to technological advances
and cost reductions for environmental monitoring hardware, connected
Internet of Things (IoT) devices, and cloud computing. Citizen scientists
can take an active role in monitoring air quality at the neighborhood
level by installing low-cost air quality sensors (LCS) that collect and
report air pollutant data. Particulate matter (PM) is an air pollutant that
is categorized based on size with fine particulate matter (PM2.5) defined
as particles with aerodynamic diameter less than 2.5 μm. The ability to
record and visualize hyper-local data in an intuitive and informative
interface will likely spawn an increase in interest and interaction with
environmental data sets due to the locally relevant nature of the infor
mation. On the other hand, non-intuitive or limited user interfaces and
confusing user experiences may discourage citizen scientists from

* Corresponding author. 21865 Copley Dr. Diamond Bar, CA, 91765, USA.
E-mail address: bfeenstra@aqmd.gov (B. Feenstra).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2020.104832
Accepted 6 August 2020

https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensor/tree/version-0.5
https://github.com/MazamaScience/AirSensorShiny
https://github.com/MazamaScience/AirSensorShiny
mailto:bfeenstra@aqmd.gov
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2020.104832
https://doi.org/10.1016/j.envsoft.2020.104832
https://doi.org/10.1016/j.envsoft.2020.104832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2020.104832&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 134 (2020) 104832

2

interacting with the collected data. The increasing complexity, size, and
resolution of today’s environmental monitoring networks have created
big data challenges leading to the emergence of a new field of study:
Environmental Data Science (Gibert et al., 2018). Data science combines
computer programming skills, math and statistical knowledge, and
subject matter expertise (Conway, 2013). Free Open Source Software
(FOSS) platforms play a vital role in the progress of research towards
developing new methods for addressing environmental data science
challenges. The R-environment and Python are two FOSS programing
languages that are often used in environmental data science applications
(Kadiyala and Kumar 2017a, 2017b). Open access to environmental data
sets and related tools is foundational for environmental data science to
thrive and develop. Environmental monitoring data can be considered
open access when the data is available through a stable and consistent
Application Programming Interface (API) that allows software and
application developers to build applications to display and report that
data in transparent and meaningful ways.

Environmental data scientists can access regulatory data via open
API’s (e.g., AirNow API, OpenAQ API) to create custom web applications
for displaying air monitoring (AM) data (AirNow, 2020; OpenAQ,
2020). These AM data viewing websites are useful and provide infor
mation to the public at varying granularity spatially and temporally.
Two examples of data viewing websites include the OpenAQ map and
the World’s Air Pollution: Real-time AQI (WAQI) map which both
display international air quality monitoring data (OpenAQ, 2020; World
Air Quality Index Project, 2020). OpenAQ uses a color scale (Fig. S1 in
the Supplemental Information (SI)) that deviates from the common Air
Quality Index (AQI) color scale to display air pollution concentrations. A
special feature in the WAQI website is their use of calendar plots to
display AM information. Data viewing websites that display modeled or
interpolated air pollutant or AQI values are also available (BreezoMeter,
2020; IQAir, 2020; Plume Labs, 2020). When displaying data from both
regulatory-grade instruments and LCS, the source and type of data dis
played should be readily apparent. A lack of differentiating and identi
fying data sources may cause confusion for the end-user, especially if the
LCS do not agree with nearby regulatory-grade instrumentation. With
interpolated or modeled maps, often the user is not readily aware of the
input parameters used to model air quality data. When viewing modeled
air pollution information, the viewer should be cautious especially when
data sources are not readily apparent and input parameters, whether
defendable or questionable, for the data model are unknown to the
end-user/viewer (Hagler et al., 2018). Broadly, the available sensor data
viewing platforms are map-centric with point values or interpolated
modeled data displayed with options for viewing recent time series data.

Resources for accessing and displaying data collected from networks
of LCS are available, though they vary in terms of software (FOSS or
proprietary), what they provide, and whether they are provided by the
manufacturer, a project team, or through a citizen science model. While
many sensor manufacturers have software and platforms in place for
ingesting, storing, and analyzing data that is generated from their
respective sensors, these are often proprietary and offered as a Software
as a Service (SaaS) or Platform as a Service (PaaS) requiring accounts
with monthly or annual subscriptions costs. In contrast to the SaaS and
PaaS business model, several sensor resources are available for open-
access viewing of data collected from LCS networks. These platforms
include but are not limited to the HabitatMap AirCasting map, Air
Quality Egg Portal, Luft Daten project map, PurpleAir Map, Smart Citi
zen Kit Map, and the uRADMonitor Network map (Air Quality Egg,
2020; HabitatMap, 2020; Luftdaten, 2020; PurpleAir, 2020; Smart Cit
izen Kit, 2020; uRADMonitor, 2020). PurpleAir provides open access to
the data collected by the PurpleAir network of sensors through an API
and provides open viewing and downloading of sensor data through the
PurpleAir map. The Luft Daten project is a citizen science project with
LCS reporting to a map and invites programmers to collaborate in this
FOSS development through GitHub (OK Lab Stuttgart, 2020). When
selecting a sensor in either the PurpleAir or Luftdaten GUI, the user is

currently limited to viewing only the last seven days of data in a time
series plot and current data on the map (accessed January 2020). To gain
an understanding of the historical local AM data, the user is required to
download, process, and visualize the data from these networks on their
own, which may be a limiting factor to those without the environmental
data science skills needed to perform such analysis. These sensor-specific
online resources for viewing sensor data often do not include the regu
latory AM data that may be publicly available through the AirNow or
OpenAQ API and often do not indicate what, if any, quality control (QC)
measures are taking place on the collected data before displaying
publicly.

For community members to understand local air pollution trends, a
more in-depth analysis of historical data is required. While map-centric
GUIs work well for viewing real-time data, communities that monitor air
quality in long-term deployments need additional plotting and viewing
capabilities to access and understand their local historical AM data. A
data dashboard for viewing and analyzing historical data would provide
citizen scientist with a better understanding of local air pollution levels,
particularly spatial and temporal air pollution trends. For those with
varying levels of technical data science programming skills, several
software resources are available that support individual data analysis of
air quality data. If data can be organized and loaded into a software
system, then a more in-depth analysis can occur, and custom visuali
zations can be produced. FOSS software packages have been developed
in the R and Python environments specifically for accessing and visu
alizing freely available AM data. These include the R packages openair,
PWFSLSmoke, ropenaq, and raqdm. OpenAir provides a useful package for
developing visualizations from collected AM data with functions to
create calendar plots, scatter plots, and time variation plots along with
wind roses, pollution roses, and bivariate polar plots if wind speed and
direction data is available (Carslaw and Ropkins, 2012; Carslaw and
Beevers, 2013).

If we use advanced analytical tools and access AM data directly, then
we can facilitate more organized, robust, systematic, and repeatable
data processing, analysis, and visualization of LCS data. Furthermore,
using FOSS tools allows for increased iteration and development. An
example of this workflow would be the PWFSLSmoke R package and the
associated PM2.5 AM web application developed as part of the AirFire
tools by the U.S. Forest Service (USFS) Wildland Fire Air Quality
Response Program (WFAQRP) (Callahan et al., 2019; Air Fire Tools,
2020). These tools were developed to access regulatory grade AM data
via the AirNow API and display that data graphically to assist the USFS
Air Resource Advisors to gather air quality data and create air quality
reports during wildfire smoke events. The PWFSLSmoke R package
provides functions to download, parse, and plot AM data and provides
the back-end software necessary to generate plots for displaying on the
front-end web application. A similar model in which an R-package is
used for accessing and processing LCS data would save users time and
would allow the development of custom functions for different ap
proaches to QC and more complex historical data analysis, which are
gaps we see in the current offerings. Additionally, the R-package could
provide the back-end software to support a front-end web application to
display historical AM data to provide communities with more useful
analysis and visualizations of historical data. This web application
would allow community members to answer questions about their local
environment, which are not readily answered with the current offerings
of real-time maps with limited historical data analysis.

The objectives of the software development associated with this
project were to build an FOSS R package and data viewer web appli
cation that would address the challenges identified with the data man
agement and visualization of LCS networks deployed within the U.S.
EPA Science To Achieve Results (STAR) grant project. This paper sum
marizes the development of an R package and web application designed
to address the environmental data science challenges created by
deploying 400+ LCS in 14 different communities. We wanted an open
source R package that would allow users to download sensor data, add

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

3

spatial metadata, perform data fusion with other relevant data sets, and
create maps and plots for viewing data collected by AM sensors. We also
wanted the package designed with functions so that minimal coding
would be required to complete tasks. Understanding that many would
prefer to interact with an online web application, we wanted to build an
application that would provide an interactive data experience allowing
users to make selections and explore the community AM data sets by
generating pre-defined data visuals based on their user input selections.
The South Coast Air Quality Management District (South Coast AQMD)
collaborated with Mazama Science to develop the R package AirSensor
and web application AirSensor DataViewer (DataViewer) to meet these
software development aims.

2. Methods (Software design and characteristics)

2.1. Community engagement

In 2016, South Coast AQMD was awarded a U.S. EPA STAR grant,
titled “Engage, Educate and Empower California Communities on the
Use and Applications of ‘Low-cost’ Air Monitoring Sensors” under
Assistance Agreement No. R836184. South Coast AQMD has engaged 14
California communities through a series of workshops to introduce the
project, provide technical guidance on sensor technology and deploy
ment (siting, installation, configuration, and registration) of air quality
sensors, review deployment progress and examine community data sets,
and provide software tools and resources for citizen scientists to engage
with collected data sets and create informative data visualizations.
Roughly 400 PurpleAir PA-II sensors (PurpleAir LLC, USA) were
distributed to community members. The on-going engagement with the
STAR Grant Sensor Communities (SGSC) has provided the motivation to
develop software tools to enhance the community members’ ability to
interact with historical data and extract meaningful information about
their local environment. Participants were not engaging with the data
that often (as is supported by the survey data, which is most respondents
only check their air quality data “sometimes” - 36% as opposed to
“often” - 17% and “everyday” - 5%). In person discussions provided
useful context to help us understand this by (1) reporting that data was
difficult to access and download (especially. historic data), and (2)
sharing what they wished to do with the data. For example, after dis
playing a static time of day bar chart showing the diurnal PM2.5 trends
during a community workshop, one community group leader asked,
“How do I generate that plot on a regular basis and share with my
community members?” In one SGSC, a sensor host wanted to know the
best time of day to walk their dog to reduce their exposure to particulate
pollution. Additionally, multiple participants from different commu
nities shared their difficulty downloading and analyzing the publicly
accessible PA-II data especially with regards to the time/date refor
matting required for plotting in Microsoft Excel. The survey responses
along with the discussions with community members on the data science
challenges provided the motivation to build additional software tools to
address the difficulty and challenges posed by analyzing these large
community AM data sets. Increasing the number of data-sharing events
with effective data visualizations should provide participants with a
better understanding of the principles of air quality, their local air
pollution, and the proper use and application of LCS (Sandhaus et al.,
2019). Table S1 in the SI provides a summary of the environmental data
science challenges that are addressed in this project.

2.2. Software tools (R environment, RStudio, R packages, and Shiny)

The R environment is an integrated suite of software facilities that is
designed on a simple yet effective computer programming language, R.
The R environment provides tools and functions for data processing,
storage, calculation, and graphical display. Since R is designed essen
tially on a computer programming language, users are able to add
further functionality to existing packages by defining new functions and

developing packages of functions (The R environment 2019). RStudio, a
public benefit corporation, provides a FOSS version of an Integrated
Development Environment (IDE) for R which supports code execution,
debugging, and workspace management (RStudio, 2019; Allaire, 2020).
Instructions for installing R and RStudio can be found on the web and in
the literature (Kadiyala and Kumar 2017b). The fundamental unit of
shareable code in R is a package. Packages bundle together R code, data,
documentation, and tests. Packages are sharable on the Comprehensive
R Archive Network (CRAN), which is the public clearing house for R
packages. CRAN hosts a wide variety of FOSS packages that allow re
searchers to collaborate and build upon already developed R code. The
development of AirSensor built upon R packages available on CRAN;
most notably MazamaSpatialUtils, openair, PWFSLSmoke, and worldmet.
AirSensor is designed to be used with R version ≥3.3. This paper de
scribes version 0.5 of the AirSensor package which is available on
GitHub. The latest or master branch of AirSensor is also available on
GitHub. The AirSensor package can be installed using the devtools
package within R using the following code:

Shiny is a FOSS R package that provides a framework for building
interactive web applications. Shiny allows the user to turn R derived
analysis and plots into interactive web applications without requiring
HTML, CSS, or JavaScript programming. Shiny allows for the develop
ment of a web application for viewing and sharing data analytics. Since
not all users would be comfortable using the R environment which does
require coding, R Shiny was used to develop the DataViewer web
application to provide an interactive data experience for community
members that would prefer to interact with the sensor data in a web
application rather than in the R programming environment.

2.3. AirSensor - R package

Rather than describing each individual function in AirSensor, the
following examples will showcase the three primary data objects
available through the package, how to apply quality control measures on
the imported data, and how to generate plots for each of the data objects.
A complete guide to AirSensor functions and operations can be found
within the R-environment after the package has been loaded. Helpful R
vignettes are also available within the package to provide the user with
code examples for using the AirSensor functions and working with the
sensor data.

2.3.1. Data access, extraction, and data objects overview
AirSensor currently accesses data generated by PurpleAir sensors by

collecting real-time data from www.purpleair.com/json and historical
data from a ThingSpeak Representational State Transfer (REST) API.
Extracted data is enhanced with spatial metadata and transformed into
efficient data objects for downstream analytics. The three primary data
objects are the Purple Air Synoptic (PAS), Purple Air Timeseries (PAT),
and AirSensor (sensor) data objects. Functions exist for creating or
loading data objects as well as manipulating and visualizing them. An
overview of the AirSensor R package data access, data objects, and
functions is provided in Fig. 1. After installing or loading the package, a
data archive repository can be set to access archived data. Data archives
can be created that for specific sensor networks (e.g. SGSC) or for a
specific geographic area (e.g., Southern California) so that the R user can
access and load historical data more efficiently from an archive rather
than the ThingSpeak REST API. The data archives developed for the
SGSC are kept current with cron jobs (cron jobs are time-based jobs that
can run commands at specific time intervals) that are scheduled to run
every hour to pull and add the most recent data to the archive. The data
archive for the SGSC is accessible at http://smoke.mazamascience.com/
data/PurpleAir and includes historical data starting from October 01,

B. Feenstra et al.

http://www.purpleair.com/json
http://smoke.mazamascience.com/data/PurpleAir
http://smoke.mazamascience.com/data/PurpleAir

Environmental Modelling and Software 134 (2020) 104832

4

2017. A base archive can be set in AirSensor by the following code:

2.3.2. Purple Air Synoptic - Data object
The Purple Air Synoptic (PAS) data object provides an instantaneous

view of the measured values from a network of sensors. A PAS can be
created from the JSON data available at www.purpleair.com/json or can
be loaded by accessing a data archive (Fig. 1). At the time of this writing,
the time resolution of the PA-II sensors is 120 s and therefore a new PAS
data object would be available roughly every 120 s. The available
functions for manipulating PAS data object include pas_filter(), pas_fil
terArea(), and pas_filterNear(). The PAS data can be plotted on a map to
display the instantaneous data collected by the sensor network with the
pas_leaflet() and pas_staticMap() functions. Fig. 2 shows a PAS data
object displayed on an interactive map using the pas_leaflet() function
which maps sensor locations and colors the locations according to AQI.
The map is interactive in that the user can select an individual sensor
and view the values recorded at that location for the time the PAS object
was created. If a user is interested in loading specific states or air dis
tricts, the user can apply filters when generating the PAS data object.
The leaflet map can be modified with options for map tiles, parameter
displayed, and what type of sensors to display (i.e. inside or outside
sensors). Fig. 2 was produced by the following two lines of code:

2.3.3. Data fusion enhancements
Data fusion with other relevant data sources provides benefits for

custom analytics, for performing data quality checks, and for providing
information on local weather conditions. Data fusion provides the
ability to tell a more complete story about local air pollution by fusing
collected sensor data with other publicly available data sets. AirSensor
has been integrated with the PWFSLSmoke R package for access to reg
ulatory AM data via the AirNow API and integrated to the worldmet R
package for access to the U.S. National Oceanic and Atmospheric
Administration (NOAA) Integrated Surface Database for meteorological
data (Callahan et al., 2019; Carslaw, 2019). These data fusion en
hancements provide the ability to generate comparison plots between a
LCS and the nearest regulatory-grade instrument and allow for sensor
data to be joined with nearest meteorological data so that wind roses,
pollution roses, and bivariate polar plots can be generated to provide
insights into local air pollution trends. Data fusion enhancements are
performed on both the PAT and sensor data objects.

2.3.4. Purple Air Timeseries (PAT) - Data object and quality control
functions

The PAT timeseries data object provides timeseries data on a per-
sensor basis. Data manipulation functions for the PAT data object
include filtering, sampling, and joining. A PAT can be loaded from a data
archive using the pat_load() function or can be created from the Pur
pleAir ThingSpeak API with the pat_createNew() function. The code

Fig. 1. Flow Chart for data flow and functionality of the AirSensor R package.

B. Feenstra et al.

http://www.purpleair.com/json

Environmental Modelling and Software 134 (2020) 104832

5

example below loads a PAT data object for a sensor in Seal Beach, CA
that was deployed as part of the SGSC deployments. The PAT data object
includes data from January 01 to December 31, 2018. Subsequent
example code and plots displaying the AirSensor functions will be per
formed on this PAT data object or a filtered PAT data object created from
the SCSB_20 sensor. The PAT data object can be loaded into the R
environment and filtered by date with the following code:

PAT data objects can be processed for time averaging, QC algorithms,
and outlier detection for removal or replacement. The user can create
their own framework for applying QC functions depending on their
project requirements. The pat_aggregate() function returns a data frame
with aggregate statistics which are helpful for building out QC algo
rithms. The aggregate statistics include the mean, median, standard
deviation, minimum, maximum, and count for the aggregate time period
chosen. Note that the PA-II sensor node is manufactured with two
identical OEM (original equipment manufacturer) PM sensors (model
PMS 5003, Plantower, China) that report the same types and amounts of
data and for reference purposes are labeled as channel A and channel B,
respectively. For the paired channel A and B PM2.5 data columns, the

pat_aggregate() function also returns the t-test statistic (based on an
unpaired, two-sample student’s t-test), p-value, and degrees of freedom.
Several built-in QC algorithms are available in AirSensor and are labeled
as pat_qc, hourly_AB_01, and hourly_AB_02. The pat_qc function allows
the user to perform a first-level QC check for values that are considered
“out-of-spec” with regards to the manufacturer defined specifications for
the acceptable ranges for PM2.5, temperature, and humidity. The Pur
pleAirQC_hourly_AB_00() function allows the user to perform an hourly
average of the A and B sensor channels when sufficient sub-hourly data
exists for both channels within an hour. The default min-count for sub-
hourly data is set to 20 data points; requiring a data recovery for A and B
channels >66% for the current time-resolution at 120-s. No further QC is
applied with this function. Note that the PA-II’s time resolution has
changed with firmware updates over time. As firmware updates have not
been performed across the board simultaneously for all sensors in the
PurpleAir network, the following dates are estimates for firmware re
leases and data resolution. Time resolution for data prior to February
2017 is 20 s, from February 2017 to March 2017 is 40 s, from March
2017 to May 2017 is 70 s, from May 2017 to May 2019 is 80 s, and data
recorded after May 2019 is 120 s. The function Pur
pleAirQC_hourly_AB_01 allows the user to perform an hourly average of
the A and B sensor when sufficient sub-hourly data exists and when data
is considered statistically similar. Data is invalidated when (1) minimum
count < 20 values, (2) when both the means of channels A and B are not
statistically the same (two-sample t-test p-value < 1e− 4) and the mean
difference between channels A and B is greater than 10 μg/m3, and (3)
when the mean difference between A and B is greater than 20 μg/m3 for
PM2.5 values less than 100 μg/m3. These conditions assume that the air
entering the channel A and B sensors is the same and therefore the means
of the two channel measurements should be statistically similar. When
measurements from these sensor channels agree, the user can have

Fig. 2. Interactive leaflet map created from a PAS data object.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

6

higher confidence in the LCS air quality measurements and the subse
quent data averaging of the two -OEM sensors into one value. The two-
sample t-test is a statistical technique to determine whether the differ
ence between two means is significant. The default settings of these QC
checks can be modified to adjust the QC check to individual project
requirements. Additionally, new QC functions can be created and Air
Sensor users are encouraged to create their own custom QC functions
and submit these functions to be added to the AirSensor package through
GitHub. The PurpleAirQC_validationPlot() function creates a series of
timeseries plots for channel A and B, the difference between channel A
and B, t-test p-value, min count, and the hourly averaged final output
(Fig. 3).

The AirSensor pat_outlier() function provides an outlier detection
function that allows the user to apply a rolling Hampel filter to identify
points that may be outliers, and if desired, replace those identified
outliers with a rolling median value. The Hampel Filter is an outlier
detection technique that uses the Median Absolute Deviation (MAD). For
each data point, a median and standard deviation are calculated using
neighborhood values within a sample window size. If the MAD of a
single data point is a specified number of standard deviations (threshold
minimum) from the median value for the sample window, then the data
point is flagged as an outlier. The default values for the pat_outlier()
function set the sample window = 23 and the threshold minimum = 8.
Adjusting the default parameters on the function for identifying outliers
would adjust the number of points detected as outliers. Fig. 4 provides
an example of the pat_outlier function with the potential outliers

identified as red asterisks. In this example, a date filter was applied to
the pat_example previously generated to only include the June 27 to
July 8, 2018 time period that would be impacted by a special event: 4th
of July fireworks. The outlier detection function appears to identify
many of the one-off high values as outliers but does not consider the
elevated PM2.5 concentrations due to the fireworks to be outliers. This
function allows AirSensor data users to quickly implement an outlier
detection technique and visualize the results of their outlier detection
function. Fig. 4 was produced by the following R-code:

Data visualization functions for the PAT include plotting raw data
time series, interactive time series, multiplot time series (A, B, Temp,
RH), comparison plot for channel A vs. B, and a comparison plot with
regard to the nearest regulatory PM2.5 monitor. The channel A and B
PM2.5 timeseries data can be compared using the pat_interalFit() func
tion as shown in Fig. 5. For SCSB_20, the A and B sensors agree with each
other with an R2 > 0.98, slope of 1.05, and an intercept of − 0.8. Since
the two sensors perform similarly for 2018-time frame, the blue times
eries points representing the B sensor are plotted over top of the red
points representing the A sensor. The code to generate the plot is:

The pat_scatterplot function provides a multi-panel scatterplot for
variables in the PAT data object with an example of the plot shown in
Fig. 6. This plot allows the researcher to determine if there is a lack of
correlation between the A and B sensor channels or if there are higher
than expected correlations between PM2.5 concentrations and weather

Fig. 3. Plot generated to visualize the QC_01 algorithm for SCSB_20 located in Seal Beach, CA. A/B separate provides a timeseries plot for channel A and B; A/B
difference provides a timeseries of the mean difference between the A and B channels; t-test p-value provides a timeseries of the p-value statistic between the two
channels; A/B minimum count provides the minimum count of data points in 1-hr for the A and B channels; and hourly_AB_01 provides the 1-hr quality controlled
average data processed with the hourly_AB_01 function.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

7

conditions (temperature and humidity). This plot also provides the
timeseries and distribution of data points for PM, temperature and hu
midity. In Fig. 6, the distribution plots for the A and B sensor channels
indicate PM2.5 concentrations for this sensor are typically less than 25
μg/m3. The datetime column provides an indication of periods of

downtime with a noticeable downtime seen in August and September of
2018.

A sensor can also be compared to the nearest regulatory air moni
toring station (AMS) with the pat_externalFit() function (Fig. 7). In this
example, the sensor is 3.1 km away from the regulatory AMS equipped

Fig. 4. Plot generated with the rolling Hampel filter identifying potential outliers in red asterisks for SCSB_20 from June 27 to July 08, 2018. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Scatter plot and timeseries rendered using the pat_internalFit function to compare channel A and B within a single PA-II sensor, SCSB_20, for 2018.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

8

with a Met One Beta Attenuation Monitor (BAM), which is a U.S. EPA
designated Class III FEM (EQPM-0308-170) for PM2.5. The time resolu
tion of the regulatory PM2.5 data is hourly. To match LCS data with the
regulatory data, this function uses the QC procedures previously
described to hourly aggregate the sensor data. The user can specify
which QC algorithm to apply or create custom QC functions. Fig. 7 in
dicates that while the sensor follows the typical daily PM2.5 trends of the

nearby regulatory-grade instrument for PM2.5 with R2 > 0.73, the sensor
tends to estimate higher concentrations than the regulatory-grade in
strument. This slope/intercept offset could be due to a local emission
source impacting this particular sensor location or could be due to
sensor measurement bias error that has been identified in prior publi
cations (Feenstra et al., 2019; Magi et al., 2019). For the time-series in
Fig. 7, the purple colored points represent the 1-hr PurpleAir sensor data

Fig. 6. Plot generated using the pat_scatterplot function to graphically view the variables in the PAT timeseries data object.

Fig. 7. Scatter plot and timeseries plot rendered using the pat_externalFit() function which compares the PA-II sensor, SCSB_20, in Seal Beach, CA to a nearby
regulatory-grade PM2.5 instrument in Long Beach, CA.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

9

and the black colored points represent the regulatory-grade instrument
data. If the two agree closely within an hour, the black point would be
plotted on top of the purple point for that hour. The plot in Fig. 7 is
created with the following:

The pat_dygraph function returns an interactive time-series plot for
both channel A and B allowing the user to zoom in/out and investigate
date/times when PM2.5 concentrations may be higher than normal
(Fig. 8). Using the interactive time-slider located below the plot allows
the user to quickly zoom in to further investigate dates and times with
particle pollution events. With a small amount of code, the dygraph
provides a versatile, interactive plot, where the user can explore a large
amount of data at customizable levels with the time slider and zoom in/
out features. Fig. 8 is created with the following:

2.3.5. Hourly QC data object (sensor)
The sensor data object is generated on a per sensor basis from a PAT

data object with the pat_createAirSensor() function. The user will need
to specify a PAT data object, time averaging period, parameter, channel,
QC algorithm, and minimum count. The QC algorithms applied in
creating the sensor data object are described earlier in Section 2.2.4 with
regards to the QC functions that can be applied to a PAT timeseries data
object. The functions for sensor data objects begin with “sensor_”. An
example creating a sensor data object is shown in the code below:

Plots available for the sensor data object within the AirSensor package
include a bivariate polar plot and pollution rose, which wrap functions
from the openair R package. The meteorological data used to generate

these plots is retrieved from the NOAA worldmet R package. The bivar
iate polar plot and pollution rose, which are shown in Fig. 9 and Fig. 10
respectively, provide the user with the ability to couple wind direction
and wind speed with PM2.5 pollutant data to determine whether pollu
tion events can be attributed to specific meteorological conditions and
potentially identify pollution sources. A more in-depth analysis of these
plots and their application in analyzing AM datasets is accessible within
the published literature on the ‘open-air’ R package development (Car
slaw and Ropkins, 2012) and use of bivariate polar plots (Carslaw and
Beevers, 2013; Grange et al., 2016). The pollution rose and polar plot are
generated by the following code:

2.3.6. Timestamp and time averaging for AirSensor data objects and
functions

AirSensor and AirSensor functions have been designed to appropri
ately handle timestamps and various time zones of potential users. Users
should understand how time stamps are stored and visualized within
AirSensor and take appropriate steps when creating and visualizing
AirSensor data objects; especially if using plotting functions outside of
the AirSensor package to visualize data. The PurpleAir API provides
access to data stored in Coordinated Universal Time (UTC). The Air
Sensor data objects (PAS, PAT, and sensor) all store data with a UTC
timestamp. When creating or loading either a PAT or a sensor data ob
jects, the user can specify the local time zone of the sensor selected. If a
time zone is not specified when creating a data object for a single day,
the date/time parameters will be passed as UTC, which for a sensor
located in the Pacific Time Zone (+8h UTC) would return a data object
with data from 08:00 AM to 08:00 AM local time of the following day. In
AirSensor, time stamps are labeled and time averages are coded as “time
beginning”. For example, a 1-hr time average with a timestamp of 14:00
would be an average of the data collected between 14:00 and 14:59. This
holds true even with the 2-min time-matched channel A and B sensor
data available in AirSensor. The PurpleAir PA-II channel A and B sensors
report at different times within a 120-sec time interval. In AirSensor, the
seconds are dropped and data from the A and B sensor are assigned to a
2-min time beginning time stamp for matching purposes between the
two OEM sensors within a PA-II sensor. Since data is stored as UTC, the
plotting functions within AirSensor are coded to appropriately apply
time shifts based on the sensor’s location (time zone) so that data will be
plotted and displayed in the local time of that sensor’s location.

Fig. 8. Dygraph plot with interactive time-slider generated by the pat_dygraph function.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

10

2.4. AirSensor DataViewer web application

2.4.1. AirSensor DataViewer overview
The DataViewer application was developed to provide an online

interactive data experience for the SGSC networks. These communities
and sensor names are listed in SI Table S2. This interactive web appli
cation provides access to the functionality of the AirSensor R package.
Citizen scientists that would not be able to download R and run code or
scripts to access, process, and visualize community data are now able to
visualize their community data through the DataViewer. While the
infrastructure to generate the types of plots that had resonated with
community group members during the workshops was developed in the
AirSensor package, the ability for community group members to use that
infrastructure and generate visualizations in an interactive web appli
cation without writing a single piece of code is provided in the Data
Viewer application. Plots that generated the most interest with
community group members, including calendar plots, concentration
maps, community time-lapse videos, and sensor performance plots be
tween the A and B internal sensors and between the sensor and nearest
reference PM2.5 monitor, were prioritized for incorporation in the
DataViewer. The following sections will provide an overview of the back-
end infrastructure required for the DataViewer application and the
methodology for the DataViewer color scale and timelapse videos. The
front-end of the DataViewer, which is the online web application and the
primary point of interaction for community members, is highlighted in
the results section.

2.4.2. Cloud computing resources
Cloud computing provides computing services over the internet

using a pay-as-you-go pricing model. Computing services typically
include computing power, storage, networking, and analytics. Cloud
computing can provide benefits by allowing programmers to focus on
building new and innovative applications rather than acquiring and
maintaining the infrastructure required for their computational needs.
The cloud can provide benefits with cost reductions for IT infrastructure
and can increase the scalability, elasticity, reliability, and security of
computational services in comparison to computation services provi
sioned locally or on-premise. Azure, which is Microsoft’s public cloud
computing platform, was used to support the computational re
quirements of the DataViewer application. The application could also be
run on another public cloud platform or on premise if desired. The
computation services required include running scheduled tasks (cron
jobs) for creating data objects, storing data in structured data di
rectories, and hosting the DataViewer application. The data archive
consists of a set of flat files defined by a simple directory and naming
protocol with the data ingest scripts written in the R programming
language. A virtual machine (VM) was configured on Azure with the
structured directories for the data directories along with required soft
ware (i.e., Git, Apache, Docker, and R). A second VM was configured to
host the DataViewer application. Fig. 11 provides a simplified system
architecture for the DataViewer application.

Fig. 9. PM2.5 Pollution Rose generated by the sensorpollutionRose() function for SCSB_20 located in Seal Beach, CA for June 27 to July 08, 2018.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

11

2.4.3. DataViewer color scale
Determining an appropriate color scale for pollutant concentrations

generated by LCS is challenging. Historically, air quality has been
colored according to the AQI with values ranging from 0 to 500 with six
distinct color categories; good (green), moderate (yellow), unhealthy for
sensitive groups (orange), unhealthy (red), very unhealthy (purple), and
hazardous (maroon). Historically, AQI has been calculated at 24-h av
erages due to the scientific information about air pollution exposure and
public health. In 2013, the U.S. EPA released a new AQI calculation
method (NowCast Reff method) for PM2.5 that calculates AQI hourly
based on the previous 12 h with the most recent hourly pollutant con
centrations given larger weighting when air quality is changing rapidly
(Mintz et al., 2013). The U.S. EPA in the Air Sensor Toolbox suggested a
new pilot version color/concentration scale that could be used for 1-min
high time resolution data from LCS (U.S. Environmental Protection
Agency, 2019). This scale uses four shades of blue for low, medium,
high, and very high PM2.5 concentrations and is shown in SI Fig. S2. The
scale from the AirSensor Toolbox was created for 1-min sensor data in
contrast to this work in which LCS data is processed with QC algorithms
and time-averaged to 1-hr concentrations prior to being displayed in the
DataViewer application. Furthermore, the authors wanted to provide

users with a clearer differentiation among the higher pollutant levels
sometimes indicated by the sensors. Hence, a new color scheme was
developed for the DataViewer that includes 5 concentration categories
represented by two colors (blue and purple) with variations in the hue
and luminance as shown in Table 1.

2.4.4. FF MPEG and digital stills and video stills creation
One of the desires of the community groups was to view historical

time-lapse concentration maps to view past air quality events in their
communities. To accomplish this task, cron jobs run hourly to create
video still images for each of the 14 SGSC. These images are stored in the
structured data directory in sequence and converted into mp4 video files
using FFmpeg, which is a FOSS (Dawes, 2019; FFmpeg, 2019).

3. Results

3.1. AirSensor package

The AirSensor R package meets the community needs for those
desiring to work with PurpleAir LCS data programmatically in the R
environment. Through the AirSensor package, real-time and historical

Fig. 10. PM2.5 Bivariate Polar Plot generated by the sensorpolarPlot() function for SCSB_20 located in Seal Beach, CA for June 27 to July 08, 2018.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

12

data from the SGSC (listed in SI Table S2) can be accessed, loaded into R,
and visualized used pre-built plotting functions. These plotting functions
allow the user to create useful and interactive plots that can be shared
within a community group and deliver actionable information for the
community members to answer questions like “When is particle pollu
tion highest in my community?” and “What time of day or day of week
would be best to plan an outdoor activity (i.e. walk dog or golf game) to
potentially reduce my particle pollution exposure?” AirSensor creates a
data flow for the end-user to create data objects for synoptic data, time-
series data, and QC hourly PM2.5 data. With the functions of this R
package highlighted in the methods section, the user can easily create
informative plots for community members to understand their local
historical air quality trends with minimal coding required. The AirSensor
R package and associated functions provide the necessary back-end
software analysis and plotting functions to create the front-end Data
Viewer web application. The DataViewer is usable and useful to a much
broader segment of the public and is the primary point of interaction for
community members to gain insights into their local air quality

conditions. This solution provides an example of how these types of tools
and solutions can enhance public engagement with data from LCS
networks.

3.2. DataViewer application

3.2.1. User interface: Tabular structure and plotting features
The DataViewer application, version 0.9.7, has a hierarchical page

and tab structure with 4 top-level pages: Explore, View Data, Latest
Data, and About. The View Data page is for viewing tabled data and
provides the ability to download data in 3 to 30-day intervals on a per
sensor basis. For SGSC, historical data can be accessed back to the start
of the SGSC deployments: October 01, 2017. The View Data page in
cludes high resolution (2-min) time-matched PA-II PM2.5 data from the
A and B sensor channels, temperature (◦F), and relative humidity (%).
This data output provides the user with a clean time-matched data set for
the A and B sensor. Creating a similar data set outside of the AirSensor R
package or DataViewer application would likely be time consuming and
difficult; especially if the user were not proficient with Microsoft Excel
or data science environments. The Latest Data page provides visual ac
cess to the latest non-QC data on a per sensor basis with timeseries plots
provided for sensor channel A, channel B, humidity, and temperature.
The “About” page provides an overview of the DataViewer, its intended
purpose, QC procedures, and a disclaimer message.

3.2.2. Explore page: Tabs and functionality
The Explore page has the most functionality for exploring and

analyzing community AM data and includes six tabs: Overview, Calen
dar, Raw Data, Daily Patterns, Compare, and Timelapse. In the Overview
tab, the user can select a community, a single sensor (sensor name), a
date (end date), and view past data with options for viewing the prior 3,
7, 15, or 30 days to the selected end date. The Overview tab (Fig. 12)
provides a map that displays the average PM2.5 for all sensors within the
selected community for the time period selected (3, 7, 15, or 30-day
average) and a bar chart that displays hourly PM2.5 concentrations for
the selected sensor. This overview tab provides the user with access to
historical pollutant concentrations for the user-selected timeframe for
their community and individual sensor. By changing the date, the user
can quickly identify spatial differences between locations since the map
indicates an average PM2.5 concentration for the entire timeframe

Fig. 11. System architecture for the DataViewer application.

Table 1
DataViewer color/concentration scale for 1-Hr PM2.5
concentrations.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

13

chosen (3–30 days). Additionally, the user can quickly scan the bar chart
for when higher than typical PM2.5 concentrations were recorded for a
particular sensor.

In the Calendar tab, a 1-year calendar plot is rendered for a single

selected sensor. The user selects a community, sensor, and date with a
calendar plot being generated for the entire calendar year of the date
selected (Fig. 13). The calendar plot is interactive and when the user
hovers over a date, the 24-Hr averaged PM2.5 concentration is displayed.

Fig. 12. Overview tab in the DataViewer application showing PM2.5 concentrations and sensor locations for Seal Beach, CA.

Fig. 13. Calendar Plot generated using the AirSensor DataViewer Application. The darker shades indicate higher levels of pollution as set forth in the color scale
provided in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

14

The calendar plot is easily understood by community members and
provides an intuitive view of a complete year of PM2.5 data for a single
sensor. The calendar tab is great place to start when exploring a com
munity data set to find dates with atypical 24-hr PM2.5 concentrations.
The user can then further examine these atypical pollution events at
higher time resolution with other tabs available within the Explore page.
The calendar plot especially resonated with the community members
and sensor hosts; and therefore, was a priority for inclusion in the
DataViewer application. Calculating and rendering the calendar plot is
computationally expensive and may take a few moments to display
when interacting with the DataViewer application, but the result is well
worth the wait for this informative plot. Throughout the workshops, we
received the most feedback and discussion from community members
when showing the calendar plot. The calendar plot triggered the audi
ence and facilitated effective discussions during community workshops.
Community members who would be more silent or could not recall as to
what might have caused poor air quality in their community during the
past several months, were able to identify days with poor air quality and
what might have caused them when they viewed the calendar plot with
the color-coded concentrations.

The Raw Data tab provides the raw time-series data for channels A
and B, humidity, and temperature. Below the time series plots, the Raw
Data tab provides a comparison between the channel A and B sensors
with both a time-series and a scatterplot that indicates the regression
statistics between the channel A and B. This functionality uses the
pat_internalfit() function from the AirSensor R package which was pre
viously shown in Fig. 5. These comparison plots provide the user with
the ability to check on the performance of an individual sensor by
viewing how well the two internal raw sensors within the PA-II agree for

the selected time period. If a user is concerned with the performance of
an individual sensor, this tab can be used to determine if both the raw
sensors are responding to changes in particle concentrations similarly.
Low correlation and/or a large slope/intercept offset are indicative of a
sensor performance issue and that one or both sensors may be experi
encing a malfunction.

The Daily Patterns tab (Fig. 14) provides a bar chart illustrating the
diurnal trend for PM2.5, a pollution rose, and a summary table for the
NOAA weather data for the date range selected. The daily patterns bar
chart provides the average concentration by hour of day. With this tab,
the DataViewer user can determine on average what hour of the day has
the highest and lowest particle pollution. This plot helps to inform users
as to historical trends within their community and provides information
that the community member can infer what time of day may be best for
scheduling physical activity to reduce particle pollution exposure based
on historical air pollution trend data. The pollution rose allows the user
to determine if pollution can be attributed to specific meteorological
conditions.

The Compare tab provides a comparison between the sensor data and
the nearest AMS equipped with a continuous regulatory PM2.5 instru
ment. The Compare tab provides a map indicating the location of the
sensor and nearest AMS along with a timeseries and scatter plot com
parison for the two data sources, allowing the user to determine if the
selected sensor follows the typical trends for PM2.5 recorded at the
nearby regulatory AMS for the date range selected. The DataViewer
application is using the AirSensor pat_externalfit() plotting function
which was shown prior in Fig. 7. While the distance between the regu
latory monitor and the LCS is provided on the Sensor-Monitor Com
parison timeseries plot, the map provided in the DataViewer on this tab

Fig. 14. Snapshot of the Daily Patterns tab in the DataViewer application.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

15

allows the user the opportunity to visualize the distance between and the
spatial context of the two monitoring locations. Understanding the siting
of the LCS and the regulatory AMS is crucial to understanding the in
formation provided by the comparison plot. If either the sensor or reg
ulatory monitor is installed in a near-source environment (i.e. near-
road), the user should not expect the two measurements to agree.

The final tab in the Explore page is the Timelapse tab. This tab
provides the user with the ability to generate a 6-day timelapse PM2.5
concentration video on a per community basis (Fig. 15). Right-clicking
on the video allows the user to save a MP4 video to their computer
and share if desired. This timelapse concentration map allows the user to
view pollution events that may have taken place within a community
during a selected time frame and visualize the flow of pollutants through
a community. An informative approach to using this timelapse video is
first to use the calendar plot feature to identify dates with elevated PM2.5
mass concentrations (μg/m3). After identifying those dates, the user can
then choose an inclusive date range to view the community timelapse to
better understand the pollution event.

4. Discussion

While online systems exist to view real-time and recently recorded
measurements, FOSS tools for accessing, processing, and analyzing
historical AM data collected by LCS are less available to the public.
Developing FOSS tools for archiving, interpreting, and communicating
data from sensors has been identified as a concrete next step towards
building a system for filling the air quality data gap (Pinder et al., 2019).
This work provides a FOSS R package and a web application designed to
fill that gap by providing the software tools to view both real-time and
historical hyper-local air quality information generated by LCS net
works. Access to hyper-local air quality information is expected to
spawn an increased desire to interact with air quality information and
allow community members to take appropriate actions based on results
generated from their community monitoring networks. The AirSensor R
package and DataViewer application provide a framework and data flow
for communities to transform their community monitoring data sets into
insightful information through interactive data experiences and data
explorations. When meaningful results and observations are formulated,

community members can take appropriate actions to reduce their
exposure to air pollutants. These actions could include planning trans
portation (e.g., walk, bike, motor vehicle) routes to reduce air pollution
exposure and scheduling physical activity events (e.g., golf game,
sporting practice, sporting event) during hours of the day or day of the
week that have been identified to have lower PM2.5 pollution based on
historical data analysis. Our experience with sharing the DataViewer
with the community leaders and members participating in the project
has been positive with users enjoying the interactive data experience
provided within the DataViewer. These community members have
shared how this DataViewer provides them with the analysis capabilities
to better understand their local air quality conditions. Plots that previ
ously seemed out of reach due to required technical data analysis skills
and coding experience are now readily available and generated with
only a few selections and mouse clicks within the DataViewer
application.

FOSS software developments provide efficiency by building a com
munity of proactive data users around shared tools and allowing for
multiple parties (i.e. agencies, entities, individuals) to contribute to
software development and enhancing software functionalities. This
benefit has already been realized as with the USFS AirFire group funding
further developments to AirSensor for functions to calculate state-of-
health metrics designed to categorize whether sensors are functioning
properly. This information will be used in the context of wildfire air
quality response. FOSS allows for researchers to collaborate and build
upon the foundation established in this development. FOSS de
velopments can also provide a high level of transparency in terms of data
analysis and integrity as the end-user is able to select which post-
processing steps are appropriate for their data analysis. With FOSS
tools and publicly available data sets, researchers can reproduce data
analysis techniques and develop additional functions with the interop
erability associated with FOSS development.

5. Conclusions

This novel work brings these software systems to the end-users or
community members in a FOSS format with all the advantages of open
software developments. Not only is the end-user able to access, process,

Fig. 15. Community timelapse video tab.

B. Feenstra et al.

Environmental Modelling and Software 134 (2020) 104832

16

and analyze historical sensor data, but the user also has access to the
source code and functions with the option to create their own custom
functions for QC, filters, and advanced analytics. Allowing the com
munity to build upon this existing work provides benefits to the sensing
community as a whole. Developing this software in the R-environment
also provides for data fusion enrichment by coupling the collected AM
sensor data with meteorological data and regulatory AM data through
other open-source packages in the R environment. The AirSensor pack
age has established a foundation upon which further enhancements and
refinements can be developed. Both AirSensor and DataViewer source
codes are available on Github and the authors invite collaboration and
input to help shape the AirSensor open source project to best meet the
needs of the air sensing community.

The AirSensor R package is sensor specific, working with any publicly
registered Purple Air PA-II sensors. The DataViewer solution is both
sensor- and project-specific and therefore limited to the PA-II sensors
deployed by South Coast AQMD in SGSC. The authors believe that the
data flow works well for AM sensor data with the data objects going from
synoptic data to time-series data and then to hourly QC sensor data. The
blueprint developed to make the DataViewer operational could be
applied to other projects and communities to visualize data collected by
their PurpleAir LCS networks. The work discussed in this paper focused
on the initial data handling and analysis capabilities required for a
community AM network of PM2.5 sensors. Planned future work will
focus on several improvements to the AirSensor R package, the data
archive database design, and the DataViewer application. The AirSensor
R package and archive will be improved by adding functionality to
handle unique timeseries identifiers and incorporating PM1 and PM10
data. Additional plotting functionality will include enhancements to
create multi-sensor comparison plots and visualize sensor state-of-health
metrics for both individual sensors and sensor networks. Additional
enhancements to the R package may include developing models to
provide hyper local air quality forecast for the community. The Data
Viewer will be enhanced by improving the appearance, usability, data
handling, and performance of the application.

Funding

This research has been supported by a grant from the U.S. Environ
mental Protection Agency’s Science to Achieve Results (STAR) program
to the South Coast Air Quality Management District.

Disclaimer statement

This publication was developed under Assistance Agreement No.
R836184 awarded by the U.S. Environmental Protection Agency to
South Coast AQMD. It has not been formally reviewed by EPA. The views
expressed in this document are solely those of the authors and do not
necessarily reflect those of the U.S. EPA. The South Coast AQMD and U.
S. EPA do not endorse any products or commercial services mentioned in
this publication.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors would like to thank Dr. Jonathan Callahan and Hans
Martin at Mazama Science, Inc. (Seattle, WA) for their collaboration and
contributions in the development of the AirSensor R-package and the
DataViewer application tools along with their valuable feedback on this
manuscript. The sensor data used and presented in this paper was
collected by the Air Quality Sensor Performance Evaluation Center (AQ-

SPEC) at South Coast AQMD. The authors would also like to thank the
community groups’ leaders, trainers, coordinators, and members/sensor
hosts that participated in the U.S. EPA STAR grant and provided valu
able feedback that allowed us to create and improve this work. The
authors thank Ms. Emma Ranheim who assisted in user testing the Air
Sensor R package.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2020.104832.

References

Air Fire Tools, 2020. WFAQRP-AirFire tools information. Viewed 02/05/2020, from.
https://tools.airfire.org.

Air Quality Egg, 2020. Air quality Egg portal. Viewed 02/05/2020, from. https://airqua
lityegg.com/portal/.

AirNow, 2020. "AirNow developer tools." AirNow API. Viewed 02/04/2020, from.
https://docs.airnowapi.org/.

Allaire, J., 2020. RStudio, PBC. https://blog.rstudio.com/2020/01/29/rstudio-pbc/
2020.

BreezoMeter, 2020. Air quality map. Viewed 02/04/2020, from. https://breezometer.
com/air-quality-map.

Callahan, J., Aras, R., Dingels, Z., Hagg, J., Kim, J., Martin, H., Miller, H., Pease, S.,
Thompson, R., Yang, A., 2019. PWFSLSmoke: Utilities for Working with Air Quality
Monitoring Data. R package version 1.2.103, from. https://github.com/Mazam
aScience/PWFSLSmoke.

Carslaw, D., 2019. Worldmet: Import Surface Meteorological Data from NOAA Integrated
Surface Database (ISD). R package version 0.8.7, from. http://github.com/davidca
rslaw/worldmet.

Carslaw, D.C., Beevers, S.D., 2013. Characterising and understanding emission sources
using bivariate polar plots and k-means clustering. Environ. Model. Software 40,
325–329.

Carslaw, D.C., Ropkins, K., 2012. Openair - an R package for air quality data analysis.
Environ. Model. Software 27–28, 52–61.

Conway, D., 2013. The data science venn diagram. Viewed 05/31/19, from. http://
drewconway.com/zia/2013/3/26/the-data-science-venn-diagram.

Dawes, B., 2019. Using FFmpeg to convert image sequences to video. Analogue + Digital
Viewed 12/27/19, from. http://brendandawes.com/blog/ffmpeg-images-to-video.

Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B.D.,
Cocker, D., Polidori, A., 2019. Performance evaluation of twelve low-cost PM2.5
sensors at an ambient air monitoring site. Atmos. Environ. 216, 116946.

FFmpeg, 2019. FFmpeg. Viewed 12/27/19, from. https://www.ffmpeg.org/about.html.
Gibert, K., Horsburgh, J.S., Athanasiadis, I.N., Holmes, G., 2018. Environmental data

science. Environ. Model. Software 106, 4–12.
Grange, S.K., Lewis, A.C., Carslaw, D.C., 2016. Source apportionment advances using

polar plots of bivariate correlation and regression statistics. Atmos. Environ. 145,
128–134.

HabitatMap, 2020. AirCasting map. Viewed 02/05/2020, from. http://aircasting.ha
bitatmap.org/mobile_map.

Hagler, G.S.W., Williams, R., Papapostolou, V., Polidori, A., 2018. Air quality sensors and
data adjustment algorithms: when is it No longer a measurement? Environ. Sci.
Technol. 52 (10), 5530–5531.

IQAir, 2020. AirVisual map. from. https://www.airvisual.com/air-quality-map.
Kadiyala, A., Kumar, A., 2017a. Applications of Python to evaluate environmental data

science problems. Environ. Prog. Sustain. Energy 36 (6), 1580–1586.
Kadiyala, A., Kumar, A., 2017b. Applications of R to evaluate environmental data science

problems. Environ. Prog. Sustain. Energy 36 (5), 1358–1364.
Luftdaten, 2020. Measuring air data with citizen science. Viewed 02/05/2020, from. htt

ps://luftdaten.info/en/home-en/.
Magi, B.I., Cupini, C., Francis, J., Green, M., Hauser, C., 2019. Evaluation of PM2.5

measured in an urban setting using a low-cost optical particle counter and a Federal
Equivalent Method Beta Attenuation Monitor. Aerosol. Sci. Technol. 13.

Mintz, D., Stone, S., Dickerson, P., Davis, A., 2013. Transitioning to a New NowCast
Method. Viewed 11/21/19, from. https://www3.epa.gov/airnow/ani/pm25_aqi_re
porting_nowcast_overview.pdf.

Ok Lab Stuttgart, 2020. Open data Stuttgart. Viewed 02/05/2020, from. www.github.
com/opendata-stuttgart.

OpenAQ, 2020. Open data: countries. Viewed 01/24/2020, from. https://openaq.org/
#/countries.

Pinder, R.W., Klopp, J.M., Kleiman, G., Hagler, G.S.W., Awe, Y., Terry, S., 2019.
Opportunities and challenges for filling the air quality data gap in low- and middle-
income countries. Atmos. Environ. 215, 116794.

Plume Labs, 2020. Air quality map. Viewed 02/04/2020, from. https://air.plumelabs.
com/air-quality-map.

PurpleAir, 2020. PurpleAir map. Viewed 02/05/2020, from. https://www.purpleair.
com/map.

RStudio, 2019. R studio. Viewed 11/08/2019, from. https://rstudio.com/.
Sandhaus, S., Kaufmann, D., Ramirez-Andreotta, M., 2019. Public participation, trust and

data sharing: gardens as hubs for citizen science and environmental health literacy
efforts. Int. J. Sci. Educ. Part B-Communication and Public Engagement 9 (1), 54–71.

B. Feenstra et al.

https://doi.org/10.1016/j.envsoft.2020.104832
https://doi.org/10.1016/j.envsoft.2020.104832
https://tools.airfire.org
https://airqualityegg.com/portal/
https://airqualityegg.com/portal/
https://docs.airnowapi.org/
https://blog.rstudio.com/2020/01/29/rstudio-pbc/2020
https://blog.rstudio.com/2020/01/29/rstudio-pbc/2020
https://breezometer.com/air-quality-map
https://breezometer.com/air-quality-map
https://github.com/MazamaScience/PWFSLSmoke
https://github.com/MazamaScience/PWFSLSmoke
http://github.com/davidcarslaw/worldmet
http://github.com/davidcarslaw/worldmet
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref8
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref8
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref8
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref9
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref9
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://brendandawes.com/blog/ffmpeg-images-to-video
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref12
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref12
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref12
https://www.ffmpeg.org/about.html
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref14
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref14
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref15
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref15
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref15
http://aircasting.habitatmap.org/mobile_map
http://aircasting.habitatmap.org/mobile_map
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref17
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref17
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref17
https://www.airvisual.com/air-quality-map
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref19
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref19
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref20
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref20
https://luftdaten.info/en/home-en/
https://luftdaten.info/en/home-en/
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref22
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref22
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref22
https://www3.epa.gov/airnow/ani/pm25_aqi_reporting_nowcast_overview.pdf
https://www3.epa.gov/airnow/ani/pm25_aqi_reporting_nowcast_overview.pdf
http://www.github.com/opendata-stuttgart
http://www.github.com/opendata-stuttgart
https://openaq.org/#/countries
https://openaq.org/#/countries
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref26
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref26
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref26
https://air.plumelabs.com/air-quality-map
https://air.plumelabs.com/air-quality-map
https://www.purpleair.com/map
https://www.purpleair.com/map
https://rstudio.com/
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref30
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref30
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref30

Environmental Modelling and Software 134 (2020) 104832

17

Smart Citizen Kit, 2020. Smart Citizen Kit Map, 02/05/2020, from https://smartcitizen.
me/kits/.

Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S.W.,
Shelow, D., Hindin, D.A., Kilaru, V.J., Preuss, P.W., 2013. The changing paradigm of
air pollution monitoring. Environ. Sci. Technol. 47 (20), 11369–11377.

The R environment, 2019. The R environment. Viewed 11/08/2019, 2019, from. https://
www.r-project.org/about.html.

U.S. Environmental Protection Agency, 2019. Air sensor Toolbox: what do my sensor
readings mean? Sensor scale pilot project. Viewed 11/21/2019, from. https://www.
epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-
project.

uRADMonitor, 2020. Global Environmental Monitoring Network. Viewed 02/05/2020,
from. https://www.uradmonitor.com/.

World Air Quality Index Project, 2020. World’s air pollution: real-time air quality Index.
Viewed 01/24/2020, 2020, from. https://waqi.info/.

B. Feenstra et al.

https://smartcitizen.me/kits/
https://smartcitizen.me/kits/
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref32
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref32
http://refhub.elsevier.com/S1364-8152(20)30889-6/sref32
https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project
https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project
https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project
https://www.uradmonitor.com/
https://waqi.info/

	The AirSensor open-source R-package and DataViewer web application for interpreting community data collected by low-cost se ...
	Software availability
	1 Introduction
	2 Methods (Software design and characteristics)
	2.1 Community engagement
	2.2 Software tools (R environment, RStudio, R packages, and Shiny)
	2.3 AirSensor - R package
	2.3.1 Data access, extraction, and data objects overview
	2.3.2 Purple Air Synoptic - Data object
	2.3.3 Data fusion enhancements
	2.3.4 Purple Air Timeseries (PAT) - Data object and quality control functions
	2.3.5 Hourly QC data object (sensor)
	2.3.6 Timestamp and time averaging for AirSensor data objects and functions

	2.4 AirSensor DataViewer web application
	2.4.1 AirSensor DataViewer overview
	2.4.2 Cloud computing resources
	2.4.3 DataViewer color scale
	2.4.4 FF MPEG and digital stills and video stills creation

	3 Results
	3.1 AirSensor package
	3.2 DataViewer application
	3.2.1 User interface: Tabular structure and plotting features
	3.2.2 Explore page: Tabs and functionality

	4 Discussion
	5 Conclusions
	Funding
	Disclaimer statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

