

-

10th International Aerosol Conference - Tutorial

Low-Cost Sensors:

The "How" of Performance Evaluation, Network Design, and Data Handling

Dr. Vasileios Papapostolou, AQ-SPEC Supervisor Brandon Feenstra, Air Quality Specialist

St. Louis, MI – September 2, 2018

Outline

- Background
- Air Quality Sensor Performance Evaluation Center (AQ-SPEC)
- Field Testing
- Laboratory Testing
- Network Design & Data Management Platforms

Disclaimer

The South Coast Air Quality Management District does not endorse individual vendors, products or services. Therefore, any reference herein to any vendor, product or services by trade name, trademark, or manufacturer or otherwise does not constitute or imply the endorsement, recommendation or approval of the South Coast Air Quality Management District.

Air Quality Sensing

- Rapidly proliferating
- Tremendous potential
 - Low-cost?
 - \circ Ease of use
- Multiple potential applications
 - Spatial/Temporal air quality info
 - \circ Fence-line applications
 - \circ Community monitoring
 - > Need to systematically evaluate their performance
 - Accuracy, precision, durability and overall reliability
 - \circ $\,$ Calibration and drift
 - \circ $\,$ Other performance issues $\,$

Air Quality Sensing – Low-Cost/Consumer-grade?

- Raw sensor, raw sensing head
 - > \$15 to \$400

- Sensing unit: ≥1 raw sensing head + housing + user interface + external communication + power capabilities
 - > \$150 to \$400 to \$7,000

- Established in July 2014
- Over \$600,000 initial investment (funded by AQMD Board)
- Main Goals & Objectives
 - Provide guidance & clarity Ο
 - Promote successful evolution and use of sensor technology
 - Minimize confusion 0
- Sensor Selection Criteria
 - Commercially available Ο
 - Criteria pollutants & air toxics Ο
 - Real- or near-real time, time resolution \leq 5-min Ο
 - High sensitivity at ambient level and low concentrations Ο
 - Continuous operation for two months, using AC/DC power Ο
 - Retrievable data \cap
 - Low-cost...? Ο

2014 – 2018: Over 30 PM sensors evaluated

How do sensors reach AQ-SPEC for an evaluation:

- Internet search by AQ-SPEC team
- \circ $\,$ Contacted by:
 - Manufacturers
 - Vendors
 - Developers
 - Integrators
 - Citizen Scientists
 - Air Quality Experts/Researchers
 - Other AQMD/APCD Agencies

In an effort to inform the general public about the actual performance of commercially available "low-cost" air quality sensors, the SCAQMD has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC) program. The AQ-SPEC program aims at performing a thorough characterization of currently available "low-cost sensors under ambient (field) and controlled (laboratory) conditions.

Main Goals & Objectives

Field Testing

- Sensor tested in triplicates
- Two month deployment (various time intervals, random)
- Location:
 - SCAQMD Riverside-Rubidoux Air Monitoring Station
 - o Inland site
 - o Fully instrumented
- Land use: Apartment complexes, single-family residences, school grounds, retail outlets, vacant lots
- Potential PM sources:
 - California State Route 60 (1 km away)
 - \circ Small private airport (1.5 km away)

Prior to an evaluation, a bench test in the SCAQMD Lab is performed:

- Review sensor documentation including manual, operating procedures
- Evaluate power options: cable, battery, solar
- Evaluate data acquisition options: local storage, laptop data logging, cloud-based
- Evaluate raw data output format
- Evaluate functionality of On/Off switch

Air Quality Sensor Performance Evaluation Center

AQ-SPEC

PM Sensors

					1			
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R²	Summary Report	
	Aeroqual (AQY v0.5)	Optical	PM _{2.5}	~\$3,000 (multi- sensor)	R ² ~ 0.84 to 0.87			
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	R ² ~ 0.79 to 0.94			
0	Air Quality Egg (Version 1)	Optical	РМ	~\$200	$R^2 \sim 0.0$			
	Air Quality Egg (Version 2)	Optical	РМ	~\$240	$\begin{array}{l} PM_{2.5} ; \ R^2 \sim 0.79 \ to \ 0.85 \\ PM_{10} ; \ R^2 \sim 0.31 \ to \ 0.40 \end{array}$			Results
8	Alphasense (OPC-N2)	Optical	PM _{1.0} , PM _{2.5} , PM ₁₀	~\$450	$\begin{array}{l} PM_{1.0} ; \ R^2 \sim 0.63 \ to \ 0.82 \\ PM_{2.5} ; \ R^2 \sim 0.38 \ to \ 0.80 \\ PM_{10} ; R^2 \sim 0.41 \ to \ 0.60 \end{array}$	$R^{2} \sim 0.99$	PDF (1,291 KB)	www.aqmd.gov/aq-spec/evaluations
Sant	Cair	Optical	PM(1-2um), PM(3-10um)	~\$200	$\label{eq:PM2.5} \begin{array}{l} PM_{2.5} \!\!\!: R^2 \sim 0.43 \text{ to } 0.51 \\ \\ PM_{10} \!\!\!: R^2 \sim 0.39 \text{ to } 0.51 \end{array}$			
	Clarity (Node)	Optical	PM _{2.5}	~\$1300	$R^2 \sim 0.73$ to 0.76			
	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	R ² ~0.65 to 0.85	$R^{2} \sim 0.89$	PDF (1,384 KB)	
	Foobot	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.55$			
	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.65$ to 0.70	$R^2 \sim 0.87$	PDF (1,144 KB)	
2	Hanvon (Hanvon N1)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.52$ to 0.79			
(* *)	IQAir (AirVisual Pro)	Optical	PM2.5, PM10	~\$270	$\begin{array}{c} PM_{2,5}\text{:} \\ R^2 \sim 0.69 \text{ to } 0.73 \\ PM_{10}\text{:} \\ R^2 \sim 0.24 \text{ to } 0.41 \end{array}$	$PM_{2.5}$: $R^2 \sim 0.99$	PDF (1,461 KB)	
i Barrow	Met One (E-Sampler)	Optical	PM _{1.0} , PM _{2.5} , PM ₁₀ , TSP	~\$5,500	$PM_{2.5}$: $R^2 \sim 0.55$ to 0.62			
	Met One (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	$R^2 \sim 0.53$ to 0.67			

	PM Sensors								
	Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	"Field R ²	*Lab R²	Summary Report	
	0	Moji China (Airnut)	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.81$ to 0.88	ļ		
		Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$PM_{1.0}: R^2 \sim 0.1 \\ PM_{2.5}: R^2 \sim 0.2$			
	9	Origins (Laser Egg)	Optical	PM _{2.5} & PM ₁₀	~\$200	PM _{2.5} : $R^2 \sim 0.58$ PM ₁₀ : $R^2 \sim 0.0$			
		Perkin Elmer (ELM)	Optical	РМ	~\$5,200	$R^2 \sim 0.0$			
ummary	Q.	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} PM_{1,0};R^2\sim 0.93 \ to \ 0.95\\ PM_{2,5};R^2\sim 0.77 \ to \ 0.92\\ PM_{10};R^2\sim 0.32 \ to \ 0.44 \end{array}$	$\begin{array}{c} {\sf PM}_{1.0};\\ {\sf R}^2\sim 0.95\\ {\sf PM}_{2.5};\\ {\sf R}^2\sim 0.99\\ {\sf PM}_{10};\\ {\sf R}^2\sim 0.97 \end{array}$	PDF (1,072 KB)	
		PurpleAir (PA-I- Indoor)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$180	PM _{2.5} : $R^2 \sim 0.75$ PM ₁₀ : $R^2 \sim 0.36$ to 0.46			
	R	PurpleAir (PA-II)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$200	$\begin{array}{l} PM_{1,0}; \ R^2 \sim 0.96 \ to \ 0.98 \\ PM_{2,5}; \ R^2 \sim 0.93 \ to \ 0.97 \\ PM_{10}; \ R^2 \sim 0.66 \ to \ 0.70 \end{array}$	$\begin{array}{c} PM_{1.0};\\ R^2 \sim 0.99\\ PM_{2.5};\\ R^2 \sim 0.99\\ PM_{10};\\ R^2 \sim 0.95 \end{array}$	PDF (1,328 KB)	
	e	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	R ² ~ 0.99	PDF (1,087 KB)	
	10	SainSmart (Pure Morning P3)	Optical	PM _{2.5}	~\$170	$R^2 \sim 0.73$	R ² ~ 0.99	PDF (1,186 KB)	
		Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	$R^2 \sim 0.93$	PDF (1,156 KB)	
		Speck	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.32$			
		TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$	$R^2 \sim 0.99$	PDF (5,647 KB)	
	-				1000	2, 22			

 $R^2 \sim 0.0$

Polidori A, Feenstra B, Papapostolou V, Zhang H. 2017. AQ-SPEC Field Evaluation of Low-cost Air Quality Sensors - Field Setup and Testing Protocol (Diamond Bar, CA)

Previous Chamber Work

Spinelle et al., 2013 Institute for Environment and Sustainability Joint Research Centre, European Commission

Wang et al., 2015, Aerosol Sci Tech

🐺 Washington University in St. Louis

Williams et al., 2014

Office of Research and Development National U.S. Environmental Protection Agency

Austin et al., 2015, PLOS One University of Washington

10

South Coast AQMD – Laboratory

25,000 ft²

- > Particulates on integrated filter samples:
 - Mass by gravimetric analysis
 - PM components by IC, ICP-MS, XRF, TOM, GC-MS (levoglucosan)
- ➤ Gas-VOC by GC, GC-MS, HPLC, and UHPLC
- > Asbestos by polarized light microscopy, X-Ray Diffraction
- PM deposition by microscopy, XRF, and SEM-EDS
- Cr⁶⁺ by ICP-MS
- > TGA, pH and vapor pressure
- \succ TCA, CO, CH₄, CO₂
- > Compliance:

Paints, coatings, petroleum products, adhesives, lubricants and stack samples for VOC, inorganic components (e.g., metals, acids, SOx and NOx)

- 1. Chamber system (sophisticated HVAC)
- 2. "Zero air" generation system
- 3. Two Particle systems
- 4. FEM/FRM/BAT reference instruments
- 5. Integrated software

- ✓ Outer chamber
- ✓ Made of stainless steel
- ✓ Shape: Rectangular
- ✓ Volume: 1.3 m³
- ✓ HVAC system
- ✓ Louvered ceiling surface
- ✓ Set of two fans

- ✓ Inner chamber
- ✓ Teflon-coated Stainless Steel
- ✓ Shape: Cylindrical
- ✓ Volume: 0.11 m³

Ethernet & power ports

USB & power ports

- Highly precise temperature control
- Temperature range: 32 to + 177 °C

- More precise RH control at higher temp
- > At 20 °C, SD range: \pm 0.8% to \pm 3.5%
- At low temp and high RH, RH oscillates near set points, due to humidifying and dehumidifying cycle
- Relative Humidity range: 5 to 95 %

2. "Zero air" generation system

South Coast AQMD Air Quality Sensor Performance Evaluation Center

"Zero-Air" system: Dry, gas- and particle-free dilution air system

- One heated catalyst scrubber for the removal of CO
- Two scrubbers of activated carbon for the removal of VOC and NO₂
- Two scrubbers of NaMNO₄ impregnated on porous alumina (Purafil) for the removal of H₂S, SO₂, NO_x, and HCHO
- One cylinder of MnO_2/CuO catalyst for the removal of ozone O_3
- One cylinder of 13X molecular sieve
- Two cylinders of CaSO₄ to further dry the previously compressed and dried outside air
- > One in-line HEPA filter for the removal of particulate impurities

3. Two Particle systems

4. FEM/FRM/BAT reference instruments

ACCOUNT AND A ACCOUNT AND A ACCOUNT AND A ACCOUNT AND A ACCOUNT A

Manufacturer	Model	Measures	Conc. Range	LDL	Measurement Technique
GRIMM	EDM180	PM_{10} , $PM_{2.5}$, and PM_1	0.1-1,500 μg/m ³	0.1 μg/m ³	light scattering
TSI	3321	0.5 to 20 μm	0-10,000 particles/m ³	0.001 particle/m ³	double-crest optical
TSI	3091	5.6 to 560 nm	N/A	N/A	electrical mobility
Teledyne	M651	ultrafine particle conc, > 7 nm	0.001 to 10 ⁶ particles/cm ³	N/A	Water-based CPC

South Coast

FMPS 3091

M651 ²²

Particle systems control software

Gas analyzers and chamber Temp/RH sensors control software

T/RH combinations for sensor testing

	Temperature (°C)				
y (%)	5 °C / 15% (Low / Low)	20 °C / 15%	35 °C / 15%		
Relative Humidity (%)	5 °C / 40%	20 °C / 40%	35 °C / 40%		
Relat	5 °C / 65%	20 °C / 65%	35 °C / 65% (High / High)		

	PM _{2.5} /PM ₁₀
Level	(µg/m³)
Very low	10
Low	15
Medium	50
High	150
Very High	300

- Particle systems (i.e., PALAS and TOPAS)
 - Theory of operation
 - Factors in determining aerosol concentrations (i.e., recipes)
 - Aerosol atmospheres
 - o Stability
 - Reproducibility
 - Decay experiment
 - Particle size distribution
- Sensor evaluation experiments Examples

Papapostolou V, Zhang H, Feenstra B and Polidori A. 2017. Development of an Environmental Chamber for the Laboratory Evaluation of "Low-Cost" Air Quality Sensors, *Atmospheric Environment*, 171: 82-90²⁵

Aerosol Generation System

Factors in determining aerosol conc.:

- Salt type and concentration (e.g., 17% KCl in DI water)
- Pre-/Injection/post-/pause/no. of cycles
- Compressed air pressure

 \succ

	pre-inj	inj	post-inj	off	cycle
step 1	1	1	1	32	4
step 2	1	1	1	32	2
step 3	1	1	1	32	0
step 4	1	2	1	32	0
step 5	1	4	1	32	0

- Wide range of concentrations: $6 230 \ \mu g/m^3$
- Stability (5 different experiments, 300 min each)
- Reproducibility (3 repeated experiments, shaded area is std error)

- $100 \ \mu g/m^3$
- GRIMM EDM180
- 0.25-32 µm in aerodynamic particle diameters
- 31 in total size channels

- T = 0 min, started experiment, fans frequency at 20 Hz
- T = 150 min, adjusted to 40 Hz
- T = 210 min, adjusted to 60 Hz

Dust dispenser

Figure 4: Principle of the SAG 410/U

Accessed Air Quality Sensor Performance Evaluation Center

- ISO 12103-A4 (Coarse) Arizona Test Dust
- Dryness (Hygroscopicity) of the standard dust
 - $\circ~$ Dust is vacuum dried prior to use
 - $\circ~$ Dust box is purged with dry air continuously
- Feeding belt speed (%)
- Chamber fans speed

APS conc. is corrected for ATD density (2.6 g/cm³)

	Feed (s)	Cycle (s)
step 1	1	30
step 2	1	20
step 3	2	20
step 4	4	20
step 5	6	20

- T = 0 min started experiment at 10Hz (Feed 5s; Cycle 20s), 80 μ g/m³
- T = 120 min, adjusted frequency at 20 Hz, 62 μ g/m³
- T = 180 min, adjusted frequency at 40 Hz, 41 μ g/m³
- T = 240 min, adjusted frequency at 60 Hz, 23 μ g/m³

T/RH combinations for sensor testing

	Temperature (°C)			
y (%)	5 °C / 15% (Low / Low)	20 °C / 15%	35 °C / 15%	
Relative Humidity (%)	5 °C / 40%	20 °C / 40%	35 °C / 40%	
Relat	5 °C / 65%	20 °C / 65%	35 °C / 65% (High / High)	

Pollutant	ΡΜ	
Level/units (µg/m		
Very low	10	
Low	15	
Medium	50	
High	150	
Very High	300	

Evaluation Parameters:

- ✓ Intra-model variability
- ✓ Accuracy
- ✓ Precision
- ✓ Coefficient of Determination (R²)
- 🗸 Data Recovery
- ✓ Climate Susceptibility
- ✓ Interferents (e.g., monodisperse aerosols)

Intra-model variability (%) = $\frac{\text{Mean}_{\text{highest}} - \text{Mean}_{\text{lowest}}}{\text{Mean}_{\text{average}}} * 100$

where,

 $Mean_{highest}$ is the highest of the three sensors' average concentrations $Mean_{lowest}$ is the lowest of the three sensors' average concentrations $Mean_{average}$ is the average of the three sensors' average concentrations

Accuracy
$$A(\%) = 100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$

where,

X is the average concentration measured by the three sensors throughout the steady-state period considered

 \overline{R} is the reference instrument average concentration during the same steady-state period

Precision

$$P(\%) = 100 - \frac{\overline{SE_{sensor}}}{\overline{X}} * 100$$

where,

 $\overline{SE_{sensor}}$ is the standard error of the averaged concentrations of the three sensors during the steady-state period considered

 \overline{X} is the average concentration measured by the three sensors throughout the same steady-state period

$$SE_{sensor} = \frac{\sqrt{\Sigma (X - \overline{X})^2}}{n}$$

where,

X is the average value of the three sensors concentrations at different times during the steady-state period considered

 \overline{X} is the average concentration measured by the three sensors throughout the same steady-state period

Coefficient of Determination (R²)

- Measures the linear relationship between the sensor and the Federal Reference Method (FRM), or Federal Equivalent Method (FEM), or Best Available Technology (BAT) reference instrument
- Lab R² values in these reports are based either on 5-min or 1-hr average data in chamber experiments, under average ambient conditions (20 °C and 40% RH)

Data recovery (%) =
$$\frac{N_{valid data}}{N_{test period}} * 100$$

where,

 $N_{\mbox{valid}\mbox{ data}}$ is the number of valid sensor data points during the testing period

 $N_{test \ period}$ is the total number of data points for the testing period (from start to end)

Advantages:

- ✓ State-of-the-art system designed to systematically evaluate the performance of low-cost sensors
- \checkmark Stable and reproducible PM_{2.5} aerosol atmospheres
- ✓ Wide range of known target/interferent pollutant concentrations, temperature and relative humidity conditions
- ✓ Ability for sensor calibration
- ✓ Sensor data communication options (e.g., external laptop/computer, Ethernet, Wi-Fi, Bluetooth)
 Challenges:
- Due to nature of test particles, PM₁₀ atmospheres may be less stable
- Sensor performance degradation experiments
- Temperature and RH cycling tests for long periods of time

What's next for AQ-SPEC?

- > Develop methods to test VOC and CH_4 sensors (CA state rule AB 617, South Coast R1180)
- > Develop ASTM D22.05 test standard for performance verification of IAQ sensors measuring PM_{2.5} and CO₂
- Collaborate in the development of ASTM D22.03 test method for performance evaluation of ambient air quality sensors and other sensor-based instruments
- > Calibrate sensors for the various AQMD/AQ-SPEC sensor deployments (e.g., EPA STAR Grant)
- > Continue the conversation about a sensor certification/performance verification program

Sensor Performance Verification/Certification Program?

Which pollutant(s) / sensor type(s)?

 Are PM (e.g., particle counters) and Ozone (e.g., electrochemical) sensors good candidates?

"Certified" for which use/application?

- Regulatory?
- Permitting?
- \circ Fenceline?
- Citizen science?
- Community monitoring?
- \circ Other?

Very expensive to implement correctly

- \circ $\;$ Multiple field testing locations across the Nation $\;$
- Multiple laboratory testing facilities
- \circ Extended testing time

Sensor Deployment Across California

Sensor Data and/or "Sensor" Data

1. Calibration – Factory:

- Slope/Offset calculations

2. Calibration – Field:

FEM U.S. EPA/TÜV: Zero-ing and adjustment at start of test

3. Test criteria – Field:

- Field pre-calibration:
 - \circ Data completeness
 - \circ Long-term drift
 - o Between instrument uncertainty
 - Expanded uncertainty
- No field pre-calibration:
 - \circ Coefficient of determination (R²)

4. Algorithms:

- Correct interferences (e.g., RH), part of field calibration?
- Al function:
 - Pre-set and applied during field calibration?
 - Developed, selected, modified during field calibration or evaluation period?

Hagler GSW, Williams R, Papapostolou V, Polidori A. 2018. Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement? Environmental Science & Technology, DOI: 10.1021/acs.est.8b01826

5. Cloud-based systems:

 Scrape online pollutant or meteorological data from monitoring stations nearby

6. Software upgrades, "over-the-air":

- Bug fixes
- Sensor algorithm changes
- Sensor level firmware upgrades
- New functionality
- New features
- New calibration

7. ...???

Outline

- Networks of Air Quality Sensors
- Sensor Network Design (3 projects)
 - Identify project goals and air monitoring application
 - Connectivity requirements
 - Hardware selection
 - Data storage, analytics, and visualizations options
- Development of a cloud data management application

Acronyms and Terms

- IoT Internet of Things
- SaaS Software as a Service
- PaaS Platform as a Service
- API Application Programming Interface

Disclaimer

The South Coast Air Quality Management District does not endorse individual vendors, products or services. Therefore, any reference herein to any vendor, product or services by trade name, trademark, or manufacturer or otherwise does not constitute or imply the endorsement, recommendation or approval of the South Coast Air Quality Management District.

Air Quality Sensor Performance Evaluation Center

AQ_SPEC

Model for Internet of Things (Air Quality)

South Coast

AQMD

Things that Sense: Air Quality Sensors (Stationary and mobile) Weather stations, Satellite Remote Sensing

Wi-Fi (Home / Facility), Connected Cars, Bluetooth, Lo-Ra, Cellular, Zigbee radio network, satellite receiver

Data ingestion, transformation, and storage

Web-based analytics, dashboards, and applications

Accessed Air Quality Sensor Performance Evaluation Center

SCAQMD Sensor projects

Fence-line monitoring	Regional monitoring network	US EPA STAR grant community monitoring	Future monitoring projects
9 PM sensors	~ 100 nodes Measures	~ 390 PM sensors in 14 communities	Hotspot identification
IoT vendor platform	• O ₃ , NO ₂ , & PM	Wi-Fi connected	Mobile monitoring
Cellular to SaaS	Cellular to PaaS	Data sent to:PurpleAir Map	AB617 community monitoring
API Access	API access	• AQMD Azure	SCAQMD Rule 1180 implementation

Fence-line Monitoring

- 9 sensors measuring PM
- Wireless connectivity
- Power independence
- Remote Access to data / device

Software as a Service (SaaS): Environet

enviro net^{**} \sim Brandon AQ-SPEC A A Dashboard 14 Add Widget 0 • Map 6 Devices MRF MRF NW Transfer A Alerts • PM2.5 Pressure • PM2.5 Pressure • PM2.5 Pressure • PM2.5 Temperature \square Messages 3.53µg/m^a 1012.8hPa 3.53µg/m^s 1012.8hPa 4.955µg/m³ 1011.5hPa 5.304µg/m³ 25.2℃ 🔒 Users Batt. Voltage Temperature Batt. Voltage Temperature Batt. Voltage Batt. Voltage Temperature Ħ Organizations 26.1℃ 13.2V 26.1°C 13.2V 28.2°C 13.3V 13.2V જ Partnerships ille, 💷 C <1min llı, 💷 C <1min llır 💷 C <1min lin, 400 C <1min Files CNG Gate 6 Gate 7 Gate 4 📥 API • PM2.5 Pressure • PM2.5 Pressure • PM2.5 Pressure • PM2.5 Pressure 6.969µg/m³ 1014.7hPa 11.135µg/m^a 1009.6hPa 8.784µg/m³ 1012.1hPa 2.752µg/m³ 1025.5hPa Temperature Temperature Batt. Voltage Temperature Batt. Voltage Batt. Voltage Temperature Batt. Voltage 29.1°C 13.2V 29.3℃ 13.5v 27.4℃ 12.8V 29.3℃ 13.4V lin 💷 C <1min lin 💷 C <1min llı, 💷 lin 💷 C <1min C 2min

Air Quality Sensor Performance Evaluation Center

AQ_SPEC

Model for Internet of Things (Air Quality)

South Coast

AQMD

58

Fence-line Network Review

Decision	Pros	Cons	Outcomes
900 MHz Radio network	Reduced cellular cost	Low Data Recovery	Convert to cellular
Independent power and connectivity	Not reliant on regulated facility	Initial battery purchase 12V sealed lead acid (SLA)	Convert to Li-ion batteries
SaaS solution	Fast development with integrating raw sensor to cloud data store Customer support for IoT	High initial cost for hardware Ongoing monthly subscription cost	Use API to access data on an alternative platform
	hardware and platform Device Management	Limited analytics on SaaS platform	

Accessed Air Quality Sensor Performance Evaluation Center

SCAQMD Sensor projects

Fence-line monitoring	Regional monitoring network	Community monitoring	Future monitoring projects
	~ 100 AQY nodes Measures		Hotspot identification
IoT vendor platform	• O_3 , NO ₂ , & PM		
Cellular to SaaS	Cellular to PaaS		AB617 community monitoring
API Access	API access		

Regional Monitoring Network Aims

- Wide-spread deployment across the South Coast Air Basin
 - Connectivity that works in a variety of locations
 - Collaborate with entities that can provide multiple sensor locations
 - School Districts, Cities, Counties, & Libraries
- Wide-spread collocation at reference air monitoring stations
 - Build models for improving sensor performance
 - Understand sensor performance degradation over time
- Good performance in AQ-SPEC evaluation
- Platform as a Service
 - Device management
 - Data management

R² (AQY vs Reference) vs Distance: Ozone

• A one week 'snapshot' is similar to the 3 month period

R² (AQY vs Reference) vs Distance: Ozone

- Data Quality Objectives = 90% (R²)
- Correlation not always linear with distance; site location and characteristics also a factor
- How often should the sensor data be corrected using this procedure? Quarterly so far

Higher granularity for maps obtained using sensor data

Elevated NO₂ along the freeway

PM_{2.5} is more homogeneously distributed throughout the Basin

Ozone

Nitrogen Dioxide

Aeroqual AQY - Heat map animations

Performance over time: The project has shown PM accumulates on the O_3 sensor inlet mesh over time reducing flow and sensitivity

 O_3 sensor inlet

mesh at start

mesh after 6 months

Regional Network Review

Decision	Pros	Cons	Outcomes
Cellular w/ Wi-Fi option	Strong & ubiquitous connectivity	Increase cost	If cellular unavailable, can program for Wi-Fi
Platform as a Service (PaaS)	Able to create user accounts Plug-in and sense	Not open source for hardware or data	Stream data to Microsoft Azure and build an alternative platform for front-end web
	(No development)	Limited external access	analytics
	Device and data management	Limited front-end website visualization	
	Customer support for IoT hardware and platform		
Collocation	Ability to correct sensor performance drift	# of units not providing additional information to network	Worth the cost to provide quality control for sensor measurements

Acc-SPEC Air Quality Sensor Performance Evaluation Center

SCAQMD Sensor projects

South Coast

Fence-line monitoring	Regional Monitoring Network	Community monitoring	Future monitoring projects
		STAR Grant ~ 390 PM sensors in	Hotspot identification
IoT vendor platform		14 communities	
Cellular to SaaS		Wi-Fi connected Data sent to:	
API Access		 Purple Air Map AQMD Azure	

Community Monitoring (US EPA STAR grant)

Engage, Educate, and Empower California Communities on the Use and Applications of "Low-cost" Air Monitoring Sensors

Network Monitoring Aims

- Wide-spread deployment across many communities
 - Connectivity that works at a home
 - Low-Cost: Affordable in the 100s of sensors
 - Ability to be installed, Wi-Fi configured, and registered online by a non-expert
 - Open Source hardware and open data access
- Visualization tool available at start
 - End to End solution (Sensor to Map to Data)
 - Good performance in AQ-SPEC evaluation

PM Sensors

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	"Field R ²	*Lab R²	Summary Report
0	Moji China (Airnut)	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.81$ to 0.88		
	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$PM_{1.0}$: $R^2 \sim 0.1$ $PM_{2.5}$: $R^2 \sim 0.2$		
9	Origins (Laser Egg)	Optical	PM _{2.5} & PM ₁₀	~\$200	$\begin{array}{l} \text{PM}_{2.5}\text{:}\ \text{R}^2 \sim 0.58 \\ \text{PM}_{10}\text{:}\ \text{R}^2 \sim 0.0 \end{array}$		
	Perkin Elmer (ELM)	Optical	РМ	~\$5,200	$R^2 \sim 0.0$		
	PurpleAir (PA-I)	Optical	PM _{1.07} PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} PM_{1.0};R^2\sim0.93\ to\ 0.95\\ PM_{2.5};R^2\sim0.77\ to\ 0.92\\ PM_{10};R^2\sim0.32\ to\ 0.44 \end{array}$	$\begin{array}{c} PM_{1.0};\\ R^2\sim 0.95\\ PM_{2.5};\\ R^2\sim 0.99\\ PM_{10};\\ R^2\sim 0.97 \end{array}$	Р DF (1,072 КВ)
0	PurpleAir (PA-I- Indoor)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$180	$\label{eq:PM2.5: R2 ~ 0.75} PM_{10}\text{: } R^2 \sim 0.36 \text{ to } 0.46$		
2	PurpleAir (PA-II)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$200	$\begin{array}{l} PM_{1.0} \colon R^2 \sim 0.96 \ \text{to} \ 0.98 \\ PM_{2.5} \colon R^2 \sim 0.93 \ \text{to} \ 0.97 \\ PM_{10} \colon R^2 \sim 0.66 \ \text{to} \ 0.70 \end{array}$	$PM_{1.0}$: $R^2 \sim 0.99$ $PM_{2.5}$: $R^2 \sim 0.99$ PM_{10} : $R^2 \simeq 0.95$	PDF (1,328 KB)
	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	R ² ~ 0.99	PDF (1,087 KB)
19	SainSmart (Pure Morning P3)	Optical	PM _{2.5}	~\$170	$R^2 \sim 0.73$	R ² ~ 0.99	PDF (1,186 KB)
0	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	R ² ~ 0.80 to 0.90	R ² ~ 0.93	PDF (1,156 KB)
	Speck	Optical	PM _{2.5}	~\$150	R ² ~ 0.32		
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	R ² ~ 0.82	R ² ~ 0.99	PDF (5,647 KB)
-	uHoo	Optical	PM2.5	~\$300	R ² ~ 0.0		

R² = 0.9791

Unit 8464

Additional

Information

Field evaluation repor

http://www.aqmd.gov/aq-soec/evaluations/field

Lab evaluation report

http://www.aqmd.gov/aq-

/www.aqmd.gov/aq-spec

AO-SPEC website

well the PM. PM .. concentration change as monitored by GRIMM and BAM. PA-II nodes did not always follow the PM10 concentration change. The units showed 95-99% data recovery as well as low intra-model variability

Correlation coefficient (R²) quantifies how 80 y = 0.6241x + 2.7288 the three sensors followed the PM concentration change by GRIMM An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of cates a complete lack of correl 0 20 40 60 80

Laboratory Evaluation Highlights $A(\%) = 100 - \frac{|\bar{X} - \bar{R}|}{\bar{n}} + 100$ evaluated by a (µg/m³) (µg/m³) (%) oncentration 19.7 13.5 54.3 ramping experimen at 20 °C and 40%. 44.3 35.7 75.7 The sensor's reading 96.1 at each ramping 80.8 84.1 134.7 155.1 86.8 steady state are 79.9 compared to the 186.3 79.8 233.5 Precision (PM2) Low conc Medium conc. High conc Relative Humidity 15% | 40% ||65% Relative Humidity 15% #40% #65% Relative Humidity 15% # 40% # 65% 96 97 98 99 100 95 95 97 98 99 95 96 97 98 99 10 PRECISION (%) PRECISION (%) PRECISION PG % represents high precision.

Sensor's ability of generating precise measurements of PM concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5

Linear Correlation Coefficient

www.aqmd.gov/aq-spec

Community Siting

End User Interface

End User Interface

Hyper-local effects

Air Quality Sensor Performance Evaluation Center

AQ_SPEC

Model for Internet of Things (Air Quality)

South Coast

AQMD

Air Quality Sensors (Stationary and mobile) Weather stations, Satellite Remote Sensing

Wi-Fi (Home / Facility), Connected Cars, Bluetooth, Lo-Ra, Cellular, Zigbee radio network, satellite receiver

Need to apply QA/QC methods to create a validated data Need to apply corrections for sensor performance

Community Network Review

Decision	Pros	Cons	Outcomes
Wi-Fi	Free, but local access	New Wi-Fi provider = offline	Keep track and follow up with sensor owners
Low-cost	Affordability in the 100s	Inexpensive components	Replace power supplies
End-to-end solution for public	Open source hardware & open data access	Limited internal users. Internal access = same as external OS solution	Work with developer to improve analytics
	Development from sensor		Stream data to Microsoft
	to data platform is complete	Limited analytics	Azure and build an alternative platform
		Not able to customize for	
	Customer support for IoT hardware and platform	individual communities	
		Data Management	
	No Device Management		79

Data Management Platform

Needs Assessment

Multiple sensor and data platforms used for various projects with data in different formats

Data analysis workloads larger than typical tools can handle

- ~ 50 million rows of PurpleAir data and growing
- ~ 44 million rows of Aeroqual data will be generated in 12 months
- ~ 14 million rows of fence-line monitoring data

Limited data analytics available on individual IoT platforms

Limited external user experience with potential confusing user experiences

Need for QA/QC to validate data

Need to apply correction algorithms for sensor performance limitations

Need to quickly visualize and provide results to public in a clear and meaningful manner

Cloud Platform requirements:

- Cloud-based computing platform to ingest, store, analyze, and display data
 - Platform & device agnostic
 - Scalable, secure, and compliant with established data standards

Back End Requirements:

- Manage IoT devices and ingest data
- Perform simple stream analytics
- Process and store geo-spatial time series data
- Store data long-term and scale
- Interface with other platforms (APIs)

Front End Requirements:

- Create and publish web-based interactive dashboards
- Generate positive end-user experiences

Draft Cloud Architecture

Thank you - Questions?

AQ-SPEC Team

Dr. Jason Low Dr. Andrea Polidori Dr. Vasileios Papapostolou Brandon Feenstra Dr. Hang Zhang Berj Der Boghossian Dr. Michelle Kuang

Contact AQ-SPEC www.aqmd.gov/aq-spec

info.aq-spec@aqmd.gov

Contact the Speakers

Vasileios Papapostolou, Sc.D. Program Supervisor, AQ-SPEC vpapapostolou@aqmd.gov (909) 396-2254

Brandon Feenstra, M.Sc.

Air Quality Specialist

bfeenstra@aqmd.gov

(909) 396-2193 ⁸⁴