AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Aeroqual Model AQY v0.5

Pollutants: Ozone

Measurement Range: 0 - 200 ppb

Type: Gas Sensitive Semiconductor (GSS)

Additional Information

Field evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:

http://www.aqmd.gov/aq-spec

Evaluation Summary

- Overall, the three Aeroqual AQY sensors (Units 130, 131 and 132) showed decreased accuracy with increasing ozone concentration in the laboratory studies; with accuracy ranging from 11.4% at the highest ozone concentration to 79% at the lowest ozone concentration. They underestimated the FEM ozone measurements for a concentration range between 0 to 400 ppb
- The three Aeroqual AQY sensors exhibited high precision for most of the tested T/RH combinations in the environmental chamber.
- The Aeroqual AQY sensors (Units 130 and 132) showed low intra-model variability in the field deployment and low to moderate intra-model variability in the laboratory testing (Units 130, 131 and 132).
- The Aeroqual AQY sensors had good data recovery (>92 % for 5-min average in the field (Units 130 and 132), and 100% for 1-min average in the laboratory (Units 130, 131 and 132)).
- For ozone, the Aeroqual AQY sensors (Units 130 and 132) showed very strong correlations with the reference instrument from both the field ($R^2 \sim 0.96$) and laboratory studies ($R^2 > 0.97$; Units 130, 131 and 132).

Field Evaluation Highlights

- Deployment period 12/22/2017- 03/27/2018: the Aeroqual AQY sensors (units IDs: 130 and 132) showed very strong correlations with ozone concentration changes as monitored by the FEM instrument.
- The units showed > 92% data recovery as well as low intra-model variability.

 $R^2 \sim 0.96$

Coefficient of Determination (R²) quantifies how the two sensors (Units 130 and 132) followed the ozone concentration change measured by the FEM instrument.

An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

Laboratory Evaluation Highlights

Accuracy

A (%) =
$$100 - \frac{|\overline{X} - \overline{R}|}{\overline{R}} * 100$$

Steady State (#)	Sensor mean (ppb)	FEM (ppb)	Accuracy (%)
1	15.4	19.5	79.0
2	17.9	42.9	41.7
3	20.8	68.8	30.2
4	30.0	178.8	16.8
5	42.0	368.3	11.4

Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.

A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy

Precision (Ozone)

Sensor's ability of generating precise measurements of ozone concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%), cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The three Aeroqual AQY sensors showed very strong correlations with the corresponding FEM data (R² > 0.97) at 20 °C and 40% RH.

Climate Susceptibility (R2)

R ²	5 ℃	20 °C	35 °C
15%	0.966	0.966	0.967
40%	0.969	0.975	0.967
65%	0.970	0.961	0.961

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.