AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Aeroqual/ AQY v1.0

Pollutants: PM_{2.5} mass concentration

Time Resolution: 1-min

Type: Optical

Additional Information

Field evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/field

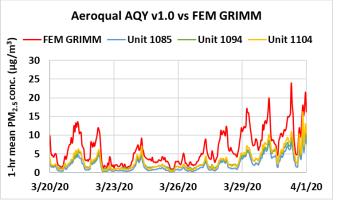
Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:

http://www.aqmd.gov/aq-spec

Evaluation Summary


- Overall, the accuracy of the Aeroqual AQY v1.0 sensors was fairly constant (\sim 73% to 85%) over the range of PM_{2.5} mass concentration tested. Overall, the Aeroqual AQY v1.0 sensors underestimated PM_{2.5} measurements from FEM GRIMM in the laboratory experiments at 20 °C and 40% RH.
- The Aeroqual AQY v1.0 sensors exhibited high precision for all T/RH combinations and all PM concentrations.
- The Aeroqual AQY v1.0 sensors (IDs: 1085, 1094 and 1104) showed low to moderate intra-model variability for the field and laboratory evaluations.
- Data recovery was $\sim 100\%$ from all units in the field and laboratory evaluations.
- For PM_{2.5}, the Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM GRIMM data ($0.77 < R^2 < 0.85$) in the field evaluations and very strong correlations with FEM GRIMM in the laboratory evaluations ($R^2 > 0.99$ for PM_{2.5}).
- The same three Aeroqual AQY v1.0 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 02/20/2020 04/22/2020: the three Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding FEM GRIMM for PM_{2.5} mass concentrations.
- The units showed low intra-model variability and data recovery was $\sim 100\%$.

Unit 1104

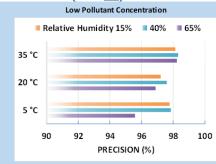
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

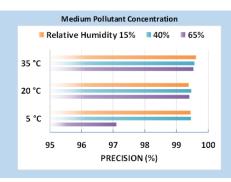
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

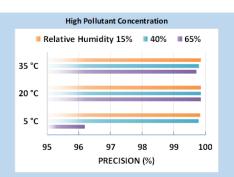
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

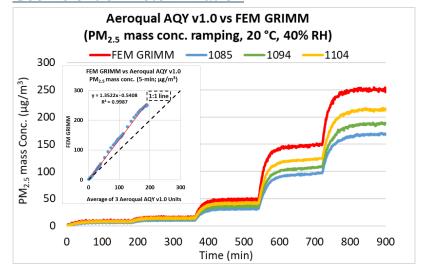
A (%) =
$$100 - \frac{|\overline{X} - \overline{R}|}{\overline{R}} * 100$$


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	7.3	8.7	84.3
2	12.7	14.8	85.4
3	36.6	48.1	76.1
4	109.4	149.4	73.3
5	190.3	250.3	76.0


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15% RH), cold and humid (5 °C and 65% RH), hot and humid (35 °C and 65% RH), or hot and dry (35 °C and 15% RH).

Coefficient of Determination

The Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C/40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Aeroqual AQY v1.0 sensors' precision. At the set-points of RH changes, the sensors showed spiked conc. changes for all PM levels at 5 °C and showed significant concentration variation for all PM levels at 5 °C/65% RH.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.