AQ-SPEC

Air Quality Sensor Performance Evaluation Center Evaluation Summary

Sensor Description

Manufacturer/Model:
HabitatMap/
AirBeam2
Pollutants:

PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration

Time Resolution: 1-minute

Type: Optical

Additional

Field evaluation report:

http://www.aqmd.gov/aqspec/evaluations/field

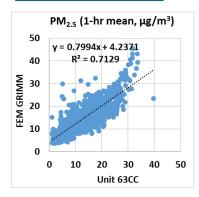
Lab evaluation report:

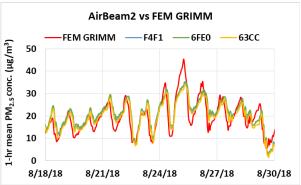
http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:

http://www.aqmd.gov/aq-spec

- Overall, the HabitatMap AirBeam2 sensors showed moderate accuracy as compared to the reference instrument for PM_{1.0} and PM_{2.5}, for a conc. range between 0 to 300 μg/m³. Accuracy was fairly constant over the range of PM_{1.0} and PM_{2.5} concentrations tested.
- The AirBeam2 sensors exhibited high precision for all T/RH combinations and all PM concentrations.
- The AirBeam2 sensors (IDs: F4F1, 6FE0 and 63CC) showed low intra-model variability.
- Data recovery was $\sim 77\%$ and 100% from all units in the field and in the laboratory, respectively
- For PM_{1.0} and PM_{2.5}, the AirBeam2 sensors showed strong correlations with GRIMM (PM_{1.0} R² ~ 0.75) and moderate to strong correlations with the FEM GRIMM, FEM BAM and FEM T640 from the field (PM_{2.5} 0.68 < R² < 0.79) and very strong correlations with GRIMM in the laboratory studies (R² > 0.99 for PM_{1.0} and PM_{2.5}).
- The same three AirBeam2 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).


Field Evaluation Highlights


- Deployment period 07/20/2018 09/19/2018: the three AirBeam2 sensors showed moderate to strong correlations with the PM_{1.0} and PM_{2.5} mass concentration as monitored by FEM GRIMM, FEM BAM and FEM T640. PM₁₀ mass conc. showed no correlations with the corresponding GRIMM, FEM BAM and T640 data
- The units showed very low intra-model variability and data recovery of \sim 77%.

1-hr mean, all ref. instr. $PM_{1.0}$: 0.74 < R^2 < 0.77

 $PM_{2.5}$: 0.68 < R^2 < 0.79

 PM_{10} : $R^2 < 0.1$

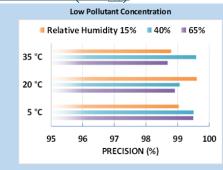
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

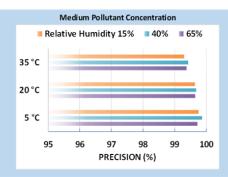
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

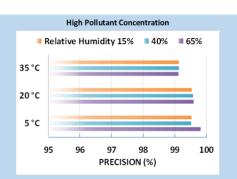
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

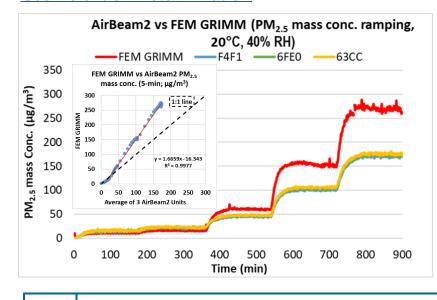
A (%) =
$$100 - \frac{|\overline{X} - \overline{R}|}{\overline{R}} * 100$$


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	15.1	10.2	51.4
2	21.6	15.2	57.8
3	46.3	59.6	77.7
4	103.7	153.1	67.7
5	173.0	270.1	64.1


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The AirBeam2 sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C and 40% RH.

For conc. ramping experiments of $PM_{1.0}$, please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the AirBeam2 sensor performance.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.