AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Oizom/Polludrone Smart

Pollutants: **CO**, O₃, NO, NO₂

Time Resolution: 1-min

Type: Electrochemical

Additional Information

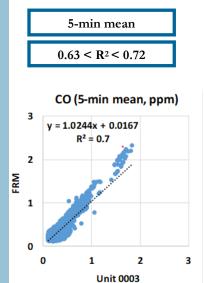
Field evaluation report:

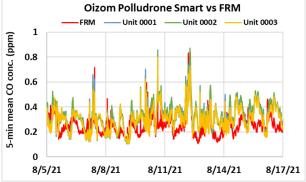
http://www.aqmd.gov/aq-spec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary

- Overall, the accuracy of the Oizom Polludrone Smart sensors ranged from 13.6% to 63.2% and decreased as CO conc. increased over the tested concentration range. The sensors underestimated the CO measurements from FRM T300U in the laboratory experiments at 20 °C and 40% RH. The sensor's readings plateaued at 5 ppm.
- The Oizom Polludrone Smart sensors exhibited high precision for all T/RH combinations and all CO concentrations.
- The Oizom Polludrone Smart sensors (IDs: 0001, 0002, 0003) showed low intramodel variability in both the field and laboratory evaluations.
- Data recovery was ~95% 100% from all units in both field and laboratory evaluations.
- The Oizom Polludrone Smart sensors showed moderate to strong correlations (0.63 < R² < 0.72, 5-min mean) with the corresponding FRM data in the field evaluation and weak correlations with the FRM T300U in the laboratory evaluations (R² ~0.35).
- The same three Oizom Polludrone Smart units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 07/31/2021 to 09/29/2021: the three Oizom Polludrone Smart sensors showed moderate to strong correlations with the corresponding FRM CO data.
- The units exhibited low intra-model variability and data recovery for CO measurements was ~95-99% from all units.

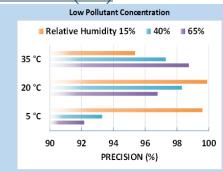
Coefficient of Determination (R²) quantifies how the three sensors followed the CO concentration change by the reference instruments.

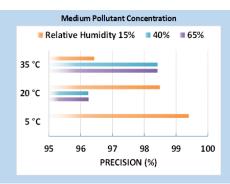
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

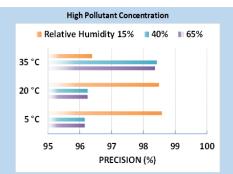
Laboratory Evaluation Highlights

Accuracy (CO)

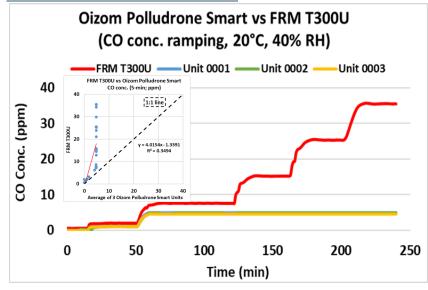
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady State (#)	Sensor Mean (ppm)	FRM T300U (ppm)	Accuracy (%)
1	1.1	2.0	54.1
2	4.8	7.6	63.2
3	4.8	15.2	31.7
4	4.8	25.3	19.0
5	4.8	35.4	13.6


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (CO)



100% represents high precision.

Sensor's ability to generate precise measurements of CO concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The Oizom Polludrone Smart sensors showed very strong correlations with the corresponding FRM T300U CO data (R² ~0.35) at 20 °C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Oizome Polludrone Smart sensors; However, the sensor's readings plateaued at 5 ppm in all conditions tested.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.