Sensor Description

Manufacturer/Model: SainSmart

Pollutants: PM$_{2.5}$

Measurement Range: 0 - 2000 µg/m3

Type: Optical

Evaluation Summary

- Overall, the three SainSmart sensors showed low accuracy. In the laboratory, the sensors overestimated the FEM GRIMM PM$_{2.5}$ measurements for a concentration range between 0 to 350 µg/m3.

- The three SainSmart sensors exhibited high precision for all tested T/RH/concentration combinations in the environmental chamber.

- Sensors showed low intra-model variability during the field testing. However, in the laboratory testing, SainSmart sensors showed moderate to high intra-model variability, especially at high PM$_{2.5}$ concentrations.

- SainSmart sensors showed excellent data recovery.

- For PM$_{2.5}$, the SainSmart sensors showed strong to very strong correlations with the reference instrument in the field ($R^2 > 0.71$) and laboratory studies ($R^2 > 0.99$).

Field Evaluation Highlights

- Deployment period 03/17/2017– 05/12/2017: the three SainSmart sensors showed strong correlations with PM$_{2.5}$ concentration change as monitored by FEM BAM.

- The units COM_22, COM_23 showed near 100% data recovery. COM_24 showed ~80% data recovery since it was down for 12 days. Good intra-model variability

Additional Information

Field evaluation report:
http://www.aqmd.gov/aq-spec/evaluations/field

Lab evaluation report:
http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:
http://www.aqmd.gov/aq-spec

Coefficient of determination (R^2) quantifies how the three sensors followed the PM concentration change reported by the FEM GRIMM.

An R^2 approaching the value of 1 reflects a near perfect correlation, whereas a value of 0 indicates a complete lack of correlation.
Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor’s readings at each ramping steady state are compared to the reference instrument.

A negative % means sensors’ overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor’s accuracy.

Sensor ability of generating precise measurements of PM concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%), cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The three SainSmart sensors showed very strong correlations with the corresponding FEM PM$_{2.5}$ data ($R^2 > 0.99$) at 20 °C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the SainSmart sensors’ precision. At low PM concentrations, during RH changes, sensors reported spiked changes in concentrations.

Observed Interferents

N/A