AQ-SPEC

Air Quality Sensor Performance Evaluation Center Evaluation Summary

Sensor Description

Manufacturer/Model: FabLab/ Smart Citizen Kit v2.1

Pollutants: PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration

Time Resolution: 1-min

Type: Optical

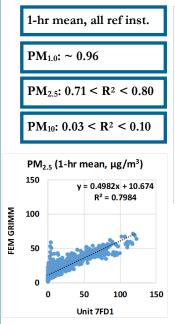
Additional

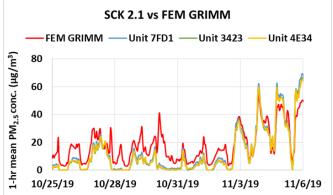
Field evaluation report:

http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory


AQ-SPEC website:


http://www.aqmd.gov/aq-spec

- Overall, the accuracy of the Smart Citizen Kit v2.1 (SCK 2.1) sensors increased (from ~63% to 80%) as PM_{1.0} mass concentrations increased; the accuracy decreased (from ~93% to 64%) as PM_{2.5} mass concentrations increased. Overall, the SCK 2.1 sensors underestimated the corresponding PM_{1.0} measurements and overestimated the corresponding PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- The SCK 2.1 sensors exhibited high precision for all T/RH combinations and all PM concentrations for PM_{1.0} and PM_{2.5} mass concentrations.
- The SCK 2.1 sensors (IDs: 7FD1, 3423 and 4E34) showed low intra-model variability for both the field and laboratory evaluations.
- Data recovery was ~100% from all units in the field and laboratory evaluations for all PM measurements.
- For PM_{1.0}, the SCK 2.1 sensors showed very strong correlations with the corresponding GRIMM data ($R^2 \sim 0.96$); and showed strong correlations with the corresponding reference data from the field evaluations for PM_{2.5} ($0.71 < R^2 < 0.80$) and very strong correlations with GRIMM in the laboratory evaluations ($R^2 > 0.99$ for PM_{1.0} and PM_{2.5}). For PM₁₀, the sensors showed no correlations with the corresponding reference data ($0.03 < R^2 < 0.10$).
- The same three SCK 2.1 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 09/19/2019–11/19/2019: the three SCK 2.1 sensors showed very strong, strong and no correlations with the corresponding reference data for PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations, respectively.
- The units showed low intra-model variability and data recovery was $\sim 100\%$.

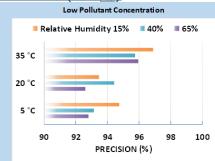
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

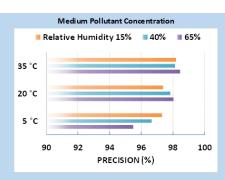
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

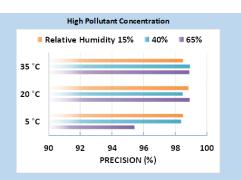
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

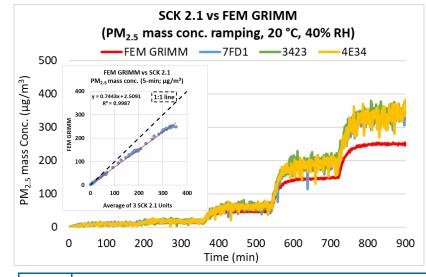
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	9.3	8.7	92.7
2	17.6	14.8	81.4
3	63.0	48.1	69.0
4	195.3	149.4	69.2
5	340.2	250.3	64.1


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15% RH), cold and humid (5 °C and 65% RH), hot and humid (35 °C and 65% RH), or hot and dry (35 °C and 15% RH).

Coefficient of Determination

The SCK 2.1 sensors showed very strong correlations with the corresponding FEM PM_{2.5} data $(R^2 > 0.99)$ at 20 °C/40% RH.

For conc. ramping experiments of PM_{1.0}, please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the SCK 2.1 sensors' precision. At the set-points of RH changes, the sensors showed spiked conc. changes at 5 °C and showed significant concentration variation at 5 °C/65% RH.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.