Incremental Cost-Effectiveness Analysis Oxidizer #1

This cost effectiveness study was performed on a Regenerative Thermal Oxidizer (RTO) rated at 8.67 mmBtu/hr, which serves as the start- up burner to bring the ceramic media of the RTO to operating temperature. The RTO is utilized to control process emissions from the lens coating and drying processes from a sunglass manufacturing plant.

Health and Safety Code 40440.11 requires an incremental cost-effectiveness study if a more stringent emission limit is proposed over an existing lowest achievable limit. The existing NOx BACT limit of 60 ppm is from Rule 1147. The proposed new BACT limit is 30 pm NOx at 3% O_2 . Both limits apply to the burner only. Only new or replacement costs are analyzed as retrofit costs are considered part of a BARCT analysis and not a BACT requirement.

Average cost-effectiveness per SCAQMD BACT Guidelines Part C analyzes the cost of applying BACT to an uncontrolled case. This BACT update is only targeting the secondary emissions from a control device, therefore average cost effectiveness does not apply.

A Low NOx burner equipped oxidizer was implemented as the control technology in this specific case. The incremental equipment cost is the cost differential between an oxidizer that achieves 30 ppm NOx and one that can only achieve 60 ppm NOx. Installation costs do not differ as the units are identical except for the burner.

Incremental operating cost consists of two components. Additional fuel use is needed from the less efficient Low NOx equipment. Also, incremental electricity cost was examined for the fan to bring extra combustion air for the Low NOx burner. Both were calculated and included as part of the annual operating cost.

The incremental cost/ton values from this analysis is below the NOx incremental threshold value from 1st quarter of 2016, the time the control equipment was implemented.

Oakley RTO Cost Effectiveness Calculations

Use R1147 limit of 60 ppm NOx @ 3% O2 as baseline, and reduction is to 30 ppm

Oxidizer Info					
Manufacturer: Adwest Technologies					
Model: Retox 30.0 RTO-97					
Rating: 8.67 MM Btu/hr					
Operation Schedule: 1.5 hr/day	300 days/yr				
Life 20 years					
Interest rate: 4 %					
Capital Cost - Incremental					
Equipment (cost of 30 ppm oxidizer - cost of 60 ppm oxidizer	er) \$12,111				
Direct & Indirect Installation	\$0				
Total Capital	\$12,111				
Annual Operating Cost - Incremental					
Additional fuel use	\$1,157	(from incremental gas use s	sheet)		
Additional electricity use	\$301	(from incremental electricity	use sheet)		
Total Annual Operating Cost (Incremental)	\$1,458				
PVF	13.590	NOx Reduction Cal	Iculation		
Present Value of Capital Costs	\$12,111		Emission Factor	Daily heat input (mmbtu/hr) 1.5 hr @ 100%	
Present Value of Annual Costs (20 years @ 4%)	\$19,815		lb NOx/mmBtu	Load	NOx lb day
Total 20-Year Capital Cost	\$31,926	For 60 ppm@3%O2	0.073	13.005	0.95
		For 30 ppm@3%O2	0.036	13.005	0.47
Emissions reduction (Ibs/day)	0.48	}	lb/e	day Reduction:	0.48
Emissions reduction (tons/Life)	1.44				
Cost per ton of NOx reduction	\$22,116	5			
MCDACT maximum and offertiveness NOv (\$400)	¢00.004		2040		

MSBACT maximum cost effectiveness NOx (\$/ton)

\$80,321 INCREMENTAL 1st Qtr 2016

Notes:

>Calculations were based on equipment cost info provided by the facility and by the manufacturer

>Annual operating costs calculated using information from the faciity and the enginnering permit file

>Maximum allowed cost effectiveness was based on 1st quarter 2016 Marshall & Swift index, during the time of the project.

>Incremental cost effectiveness uses the difference in cost and emissions between the proposed MSBACT and current BACT

>In accordance with H&SC 40440(c) the proposed MSBACT must be less than the District's established Incremental cost-effectiveness value

Incremental Gas use and cost analysis for Oakley Inc RTO

Assumptions: Ambient temp = 70 degrees F and the burner needs to reach a temp. of 1500 F (per permit condition)

		60 ppm burner	30 ppm Low NOx burner	
			ppm Low Nox burner	
8.67 mmbtu/hr burner at	amount of air for	30% excess air for 60	(e.g. MAXON	
100% load	stochiometry	ppm burner	KINNEDIZER LE)	
DIVIDE heat input rate by				
1000 scf/btu and by				
1hr/60 min to get cfm of	Multiply by 9.6 to get	air needed for 60	air needed for low nox	
nat gas	cfm of air	ppm burner (cfm)	burner (cfm)	
144.50	1,387.20	1,803.36	2,219.52	
	0	416.16	832.32	Actual excess air (cfm)
		30.00%	60.00%	Excess air Percent

Extra Energy Needed for Lo NOx burner

energy needed to	energy needed to	energy needed to heat
heat above amount of	heat above amount	above amount of air
air flow	of air flow	flow
cfm x 1.08 x delta T	cfm x 1.08 x delta T	cfm x 1.08 x delta T
0	642718	1285435
btu/hr needed	btu/hr needed	btu/hr needed

Subtract 60 ppm unit energy from 30 ppm unit

642718 btu/hr more energy needed

Divide by 1000 to convert to scf/hr

642.72 scf/hr more gas needed

Combusiton efficiency	100.00%	93.57%	87.15%	
				RTO Startup burner operates 1.5 hr/day, 300 days/yr 289222.88 scf more nat gas a year
				convert to therms
				2892.23 more therms per year
				at cost of 40cents/therm \$1,156.89 more gas cost per year

Incremental Cost Analysis - Thermal Oxidizer (RTO) Oakley Inc.

Additional Electrical cost from using Lo NOx oxidizer

Power Consumption by fan (bhp) = Q (cfm) x Pressure (inch WC) / (6356 (constant for unit conversions) x Fan efficiency Coeff)

- use 0.8 as fan efficiency coefficient

- Pressure values (in Water Column) are taken from burner specification sheets

cfm figures based on incremental gas use analysis worksheet results Bhp needed for 60 ppm equipment = 1803 cfm x 28 in WC / 6356 x 0.8 Bhp needed for 60 ppm equipment = 9.93 bhp 2219 cfm x 32 in WC / 6356 x 0.8 Bhp needed for 30 ppm equipment = Bhp needed for 30 ppm equipment = 13.96 bhp Difference of 13.96 - 9.93 =4.036 bhp Multiply bhp by .7457 =3.01 Kw Divide by 0.9 motor efficiency 3.344 kw 1504.951 kwh per year incremental electricity cost usage is 1.5 hours a day and 300 days a year \$300.99 incremental electricity cost of fan use Use 20 cents/kWh - 1504.95 kWh* 20 cents/kWh