

Appendix E

Technical Source

Documentation

Prepared for:

California Air Pollution Control Officers
Association (CAPCOA)

Prepared by:

BREEZE Software, A Division of Trinity Consultants
Dallas, Texas
in collaboration with
South Coast Air Quality Management District and the
California Air Districts

May 2021 CalEEMod Version 2020.4.0

Table of Contents

		Page
E1	Construction Survey by South Coast AQMD	E-1
E2	Building Construction Worker and Vendor Trip Rates	E-5
E3	Consumer Product Use	E-8
E4	Degreaser, Fertilizer/Pesticides Use Analysis by South Coast AQMD & Trinity	E-10
E5	Analysis of Building Energy Use Data by Trinity	E-12
E 6	Assessment of Energy Emissions Associated with Parking Lots and Structures	E-20
E7	Studies on Amount of Parking Lot Area Painted	E-28
E 8	Default Water Use for Industrial Land Uses	E-30
E 9	Default Solid Waste Generation from Industrial Land Uses	E-31
E10	Default N Load Factor for Wastewater Calculations	E-32
E11	Additional References	E-37

Appendix E1 - Construction Survey by South Coast AQMD

South Coast AQMD performed some construction surveys in order to develop default equipment usage and construction phase lengths. The initial survey was for projects less than five acres in size and is described in the following reference: The Sample Construction Scenarios for Projects Less than Five Acres in Size (http://www.aqmd.gov/ceqa/handbook/LST/FinalReport.pdf)

An additional 16 sites between five and 30 acres were surveyed for mid-sized projects. The amount and types of equipment was developed by attempting to find trends in data (i.e., comparing projects within the same project size, length of construction phases, number of pieces of equipment with areas disturbed, etc.).

The results of these surveys are included in the following tables.

E-1 October 2017

Appendix E1 - Construction Survey By South Coast AQMD

Demolition One Acre Equipment Type	No. of	hr/day	Demolition Two Acre Equipment Type	No. of	hr/day	Demolition Three Acre Equipment Type	No. of	hr/day	Demolition Five Acre Equipment Type	No. of	hr/day
Rubber Tired Dozers Concrete/Industrial Saws Excavators	Equip 1 1	1 8	Rubber Tired Dozers Concrete Saw Excavators	Equip 1 1	8 8	Rubber Tired Dozers Concrete Saw Excavators	Equip 1 1	8 8	Rubber Tired Dozers Concrete Saw Excavators	Equip 2 1 3	8 8 8
Bore/Drill Rigs Tractors/Loaders/Backhoes	2 4	6	Bore/Drill Rigs Tractors/Loaders/Backhoes	3 5	8	Bore/Drill Rigs Tractors/Loaders/Backhoes	3 5	8	Bore/Drill Rigs Tractors/Loaders/Backhoes	6	
Grading One Acre			Grading Two Acre			Grading Three Acre			Grading Five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip		Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Rubber Tired Dozers Excavators	1	6	Rubber Tired Dozers Excavators	1	8	Rubber Tired Dozers Excavators	1	8	Rubber Tired Dozers Excavators	1	8
Graders	1	6	Graders	1	8	Graders	1	8	Graders	1	8
Scrapers Tractors/Loaders/Backhoes	1 3	7	Scrapers Tractors/Loaders/Backhoes	2 4	7	Scraper Tractors/Loaders/Backhoes	2 4	7	Scrapers Tractors/Loaders/Backhoes	3 6	8
Construction			Construction			Construction			Construction		
One Acre Equipment Type	No. of Equip	hr/day	Two Acre Equipment Type	No. of Equip	hr/day	Three Acre Equipment Type	No. of Equip	hr/day	Five Acre Equipment Type	No. of Equip	hr/day
Cranes	1	4	Cranes	1	6	Cranes	1	8	Cranes	1	7
Welders Excavators			Welders Excavators	3	8	Welders Excavators	3	8	Welders Excavators	1	8
Forklifts	2	6	Forklifts	1	6	Forklifts	2	7	Forklifts	3	8
Generator Sets			Generator Sets	1	8	Generator Sets	1	8	Generator Sets	1	8
Tractors/Loaders/Backhoes	2 5	8	Tractors/Loaders/Backhoes	1 7	6	Tractors/Loaders/Backhoes	1 8	6	Tractors/Loaders/Backhoes	3 9	7
Coating/Paving One Acre			Coating/Paving Two Acre			Coating/Paving Three Acre			Coating/Paving Five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Pavers	1	7	Pavers	1	6	Pavers	1	8	Pavers	1	8
Paving Equipment			Paving Equipment	1	8	Paving Equipment	1	8	Paving Equipment	2 2	6
Cement and Mortar Mixers Plate Compactors	4	6	Cement and Mortar Mixers Plate Compactors	1	6	Cement and Mortar Mixers Plate Compactors	1	8	Cement and Mortar Mixers Plate Compactors	2	6
Rollers	1	7	Rollers	1	7	Rollers	2	8	Rollers	2	6
Tractors/Loaders/Backhoes	1	7	Tractors/Loaders/Backhoes	1	8	Tractors/Loaders/Backhoes	1	8	Tractors/Loaders/Backhoes	1	8
Site Preparation One Acre	7		Site Preparation Two Acre	5		Site Preparation Three Acre	6		Site Preparation Five Acre	8	
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Grader	1	8	Grader	1	8	Grader	1	8	Grader		
Bulldozer			Bulldozer	1	7	Bulldozer			Bulldozer	3	8
Excavator			Excavator			Excavator		0	Excavator		
Scraper Tractor/Loader/Backhoe	1	8	Scraper Tractor/Loader/Backhoe	1	8	Scraper Tractor/Loader/Backhoe	1 1	8 7	Scraper Tractor/Loader/Backhoe	4	8
Tractor/Loader/DackHoe	2	o	Tractor/Loader/Dackiloc	3	o	Tractor/Loader/Dackiloc	3	,	Tractor/Edader/Dackilde	7	o
	-			-			-			•	

E-2 October 2017

Appendix E1 - Construction Survey By South Coast AQMD

Demolition Ten Acre			Demolition Fifteen Acre			Demolition Twenty Acre			Demolition Twenty-five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Rubber Tired Dozers	2	8	Rubber Tired Dozers	2	8	Rubber Tired Dozers	2	8	Rubber Tired Dozers	2	8
Concrete Saw	1	8	Concrete Saw	1	8	Concrete Saw	1	8	Concrete Saw	1	8
Excavators	3	8	Excavators	3	8	Excavators	3	8	Excavators	3	8
Bore/Drill Rigs			Bore/Drill Rigs			Bore/Drill Rigs			Bore/Drill Rigs		
Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes		
	6			6			6			6	
Grading Ten Acre			Grading Fifteen Acre			Grading Twenty Acre			Grading Twenty-five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Rubber Tired Dozers	1	8	Rubber Tired Dozers	1	8	Rubber Tired Dozers	1	8	Rubber Tired Dozers	1	8
Excavators	1	8	Excavators	2	8	Excavators	2	8	Excavators	2	8
Graders	1	8	Graders	1	8	Graders	1	8	Graders	1	8
Scrapers			Scrapers	2	8	Scrapers	2	8	Scrapers	2	8
Tractors/Loaders/Backhoes	3	8	Tractors/Loaders/Backhoes	2	8	Tractors/Loaders/Backhoes	2	8	Tractors/Loaders/Backhoes	2	8
	6			8			8			8	
Construction Ten Acre			Construction Fifteen Acre			Construction Twenty Acre			Construction Twenty-five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Cranes	1	7	Cranes	1	7	Cranes	1	7	Cranes	1	7
Welders	1	8	Welders	1	8	Welders	1	8	Welders	1	8
Excavators			Excavators			Excavators			Excavators		
Forklifts	3	8	Forklifts	3	8	Forklifts	3	8	Forklifts	3	8
Generator Sets	1	8	Generator Sets	1	8	Generator Sets	1	8	Generator Sets	1	8
Tractors/Loaders/Backhoes	3 9	7	Tractors/Loaders/Backhoes	3 9	7	Tractors/Loaders/Backhoes	3 9	7	Tractors/Loaders/Backhoes	3 9	7
Coating/Paving Ten Acre			Coating/Paving Fifteen Acre			Coating/Paving Twenty Acre			Coating/Paving Twenty-five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Pavers	2	8	Pavers	2	8	Pavers	2	8	Pavers	2	8
Paving Equipment	2	8	Paving Equipment	2	8	Paving Equipment	2	8	Paving Equipment	2	8
Cement and Mortar Mixers			Cement and Mortar Mixers			Cement and Mortar Mixers			Cement and Mortar Mixers		
Plate Compactors			Plate Compactors			Plate Compactors			Plate Compactors		
Rollers	2	8	Rollers	2	8	Rollers	2	8	Rollers	2	8
Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes		
	6			6			6			6	
Site Preparation Ten Acre			Site Preparation Fifteen Acre			Site Preparation Twenty Acre			Site Preparation Twenty-five Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Grader			Grader			Grader			Grader		
Bulldozer	3	8	Bulldozer	3	8	Bulldozer	3	8	Bulldozer	3	8
Excavator	-	-	Excavator	-	-	Excavator	-	-	Excavator	-	-
Scraper			Scraper			Scraper			Scraper		
Tractor/Loader/Backhoe	4	8	Tractor/Loader/Backhoe	4	8	Tractor/Loader/Backhoe	4	8	Tractor/Loader/Backhoe	4	8
	7			7			7			7	

E-3 October 2017

Appendix E1 - Construction Survey By South Coast AQMD

Demolition Thirty Acre			Demolition Thirty-four Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Rubber Tired Dozers	2	8	Rubber Tired Dozers	2	8
Concrete Saw	1	8	Concrete Saw	1	8
Excavators	3	8	Excavators	3	8
Bore/Drill Rigs			Bore/Drill Rigs		
Tractors/Loaders/Backhoes			Tractors/Loaders/Backhoes		
	6			6	
Grading Thirty Acre			Grading Thirty-four Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Rubber Tired Dozers	1	8	Rubber Tired Dozers	1	8
Excavators	2	8	Excavators	2	8
Graders	1	8	Graders	1	8
Scrapers	2	8	Scrapers	2	8
Tractors/Loaders/Backhoes	2	8	Tractors/Loaders/Backhoes	2	8
	8			8	
Construction Thirty Acre			Construction Thirty-four Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Cranes	1	7	Cranes	1	7
Welders	1	8	Welders	1	8
Excavators			Excavators		
Forklifts	3	8	Forklifts	3	8
Generator Sets	1	8	Generator Sets	1	8
Tractors/Loaders/Backhoes	3	7	Tractors/Loaders/Backhoes	3	7
	9			9	
Coating/Paving Thirty Acre			Coating/Paving Thirty-four Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Pavers	2	8	Pavers	2	8
Paving Equipment	2	8	Paving Equipment	2	8
Cement and Mortar Mixers			Cement and Mortar Mixers		
Plate Compactors			Plate Compactors		
Rollers	2	8	Rollers	2	8
Tractors/Loaders/Backhoes	,		Tractors/Loaders/Backhoes		
Site Preparation	6		Site Preparation	6	
Thirty Acre			Thirty-four Acre		
Equipment Type	No. of Equip	hr/day	Equipment Type	No. of Equip	hr/day
Grader			Grader		
Bulldozer	3	8	Bulldozer	3	8
Excavator			Excavator		
Scraper			Scraper		
Tractor/Loader/Backhoe	4	8	Tractor/Loader/Backhoe	4	8

E-4 October 2017

Appendix E2 - Building Construction Worker and Vendor Trip Rates

Construction Vendor Trips - Defaults for CalEEMod Based

on 2008 SMAQMD Fi	eld Survey - Sout	h Coast AQMD 2010 Update			Square Footage		Raw E	Data Collection	in Field	Ī	
Site	Location	Туре	# Units	Residential Area, sq ft	Commerical Area, sq ft	Office Area, sq ft	Light Duty	Medium Duty	Heavy Duty	Observation Time (minutes)	Multiplier to Equate Mins to 8 hrs/day
Heritage Park	Woodland	Single Family Residential	2,037				13	3	6	37	12.97
Heritage Park (2nd visit)	Woodland	Single Family Residential	2,037				13	3	2	30	16
Yolo Co. Emergency Service	Woodland	Commercial			43,560		2	2	0	30	16
Woodshire	Woodland	Single Family Residential	2,000				5	3	5	35	13.71
Woodshire (2nd visit)	Woodland	Single Family Residential	2,000				10	0	3	30	16
815 H St.	Davis	Multi-Family Residential	8				1	0	0	30	16
Eleanor Roosevelt Cr.	Davis	Multi-Family Residential	60				2	0	0	30	16
Parlin Ranch	West Sac	Single Family Residential	306				2	1	3	30	16
Bridgeway Lakes 2	West Sac	Single Family Residential	487				7	2	0	30	16
The Rivers	West Sac	Single Family Residential	1,139				7	2	0	30	16
The River's Side	West Sac	Single Fam/ Multi Fam/ Comm	29	43,560	3,850		2	2	0	30	16
Carriage Lane	Sacramento	Multi-Family Residential	156				0	2	1	30	16
Promenade	Sacramento	Office/ Comm & Retail			751,000	504,000	10	1	6	40	12
Serenade	Sacramento	Single Family Residential					5	7	2	30	16
1801 L St. Building	Sacramento	Multi-Fam Res/ Comm & Retail	176	48,226	9,600		2	0	0	30	16
800 J Lofts	Sacramento	Multi-Fam Res/ Retail		144,035	50,965		2	1	0	30	16
Marriott Hotel	Sacramento	Multi-Family Res/ Comm	30	80,143	187,000		1	0	1	30	16
Anatolia I	Rancho Cordova	Single Fam Res/ Comm	1,038	7,122,060	631,620		19	15	10	30	16
Pappas Gateway Ctr	Elk Grove	Comm/ Retail			11,200		1	0	2	30	16
Sheldon Place	Elk Grove	Single Family Residential	164				6	2	0	30	16
Laguna Ridge (east pt)	Elk Grove	SF Res/ MF Res/ Office/ Comm & Retail	7,826	1,132,560	2,853,180	307,969	4	5	51	30	16
Laguna Ridge (west pt)	Elk Grove	SF Res/ MF Res/ Office/ Comm & Retail	7,826	1,132,560	2,853,180	307,969	7	8	8	30	16

Total Units/SqFt 27,319 9,703,144 7,395,155 1,119,938

E-5 October 2017

Appendix E2 - Building Construction Worker and Vendor Trip Rates

Construction Vendor Trips - Defaults for CalEEMod

Based on 2008 SMAQMD Field Survey - South Coast AQMD 2010 Update

		Daily Count Residential Commercial Office											
Site	Light Duty	Medium Duty	Heavy Duty	Light Duty	Medium Duty	Heavy Duty	Light Duty	Medium Duty	Heavy Duty	Light Duty	Medium Duty	Heavy Duty	References for the Residential SqFt
Heritage Park	169	39	78	169	39	78	0	0	0	0	0	0	
Heritage Park (2nd visit)	208	48	32	208	48	32	0	0	0	0	0	0	
Yolo Co. Emergency Service	32	32	0	0	0	0	32	32	0	0	0	0	
Woodshire	69	41	69	69	41	69	0	0	0	0	0	0	
Woodshire (2nd visit)	160	0	48	160	0	48	0	0	0	0	0	0	
815 H St.	16	0	0	16	0	0	0	0	0	0	0	0	
Eleanor Roosevelt Cr.	32	0	0	32	0	0	0	0	0	0	0	0	
Parlin Ranch	32	16	48	32	16	48	0	0	0	0	0	0	
Bridgeway Lakes 2	112	32	0	112	32	0	0	0	0	0	0	0	
The Rivers	112	32	0	112	32	0	0	0	0	0	0	0	
The River's Side	32	32	0	29	29	0	3	3	0	0	0	0	http://www.mintierharnish.com/projects/westsac/pdf/ 2008-2013HousingElementUpdate.pdf
Carriage Lane	0	32	16	0	32	16	0	0	0	0	0	0	
Promenade	120	12	72	0	0	0	72	7	43	48	5	29	
Serenade	80	112	32	80	112	32	0	0	0	0	0	0	Serenade at Regency Park Homeowners Association (916) 925-9000
1801 L St. Building	32	0	0	27	0	0	5	0	0	0	0	0	http://www.kuchman.com/architecture- portfolio/urban/1801L.html
800 J Lofts	32	16	0	24	12	0	8	4	0	0	0	0	http://www.cityofsacramento.org/econdev/developme nt-projects/documents/700- 800_K_Street_Final_Proposal_web.pdf
Marriott Hotel	16	0	16	5	0	5	11	0	11	0	0	0	http://sacramento.bizjournals.com/sacramento/busine ss_travel/guide/hotels.html
Anatolia I	304	240	160	279	220	147	25	20	13	0	0	0	http://www.cityofranchocordova.org/Modules/Show Document.aspx?documentid=758
Pappas Gateway Ctr	16	0	32	0	0	0	16	0	32	0	0	0	
Sheldon Place	96	32	0	96	32	0	0	0	0	0	0	0	
Laguna Ridge (east pt)	64	80	816	17	21	215	43	53	542	4	6	59	http://sacramento.bizjournals.com/sacramento/stories /2008/05/12/story7.html
Laguna Ridge (west pt)	112	128	128	30	34	34	74	85	85	8	9	9	http://sacramento.bizjournals.com/sacramento/stories/2008/05/12/story7.html
Total Daily Vehicle Trips	1,846	925	1,547										
•		Total Dail	y Vehicle Trips	1,496	701	724	289	204	727	60	20	97	
	Vehicle Trips per Unit or 1k Sq Ft			0.0548	0.0256	0.0265	0.0391	0.0275	0.0983	0.0538	0.0176	0.0863	
	TOTAL Veh	icle Trips per l	Jnit or 1k SqFt		0.1069			0.1649			0.1577		1

October 2017

Appendix E2 - Building Construction Worker and Vendor Trip Rates

Construction Vendor Trips - Defaults for CalEEMod Based

on 2008 SMAQMD Field Survey - South Coast AQMD 2010 L	Jpdate	Com	mercial and Office Dail	y Count
Site	Commerical and Office Area, sq ft	Light Duty	Medium Duty	Heavy Duty
Heritage Park	0	0	0	0
Heritage Park (2nd visit)	0	0	0	0
Yolo Co. Emergency Service	43,560	32	32	0
Woodshire	0	0	0	0
Woodshire (2nd visit)	0	0	0	0
815 H St.	0	0	0	0
Eleanor Roosevelt Cr.	0	0	0	0
Parlin Ranch	0	0	0	0
Bridgeway Lakes 2	0	0	0	0
The Rivers	0	0	0	0
The River's Side	3,850	3	3	0
Carriage Lane Promenade	1,255,000	120	12	72
	1,233,000	120	12	12
Serenade	0	0	0	0
1801 L St. Building	9,600	5	0	0
800 J Lofts	50,965	8	4	0
Marriott Hotel	187,000	11	0	11
Anatolia I	631,620	25	20	13
Pappas Gateway Ctr	11,200	16	0	32
Sheldon Place	0	0	0	0
Laguna Ridge (east pt)	3,161,149	47	59	601
aguna Ridge (west pt)	3,161,149	82	94	94
TOTALs	8,515,093	349	223	823
Ľ		0.0410	0.0262	0.0967
	Ľ		0.1639	

E-7

October 2017

Consumer Products Summary

Statewide Volatile Organic Compound (VOC) emissions data was obtained from the 2008 California Air Resources Board (CARB) Consumer Product Emission Inventory. Statewide total VOC emissions were 239.6 tons/day.

The statewide total building area is 22,435,267,518 square feet. The general building stock inventory was obtained from the HAZUS-MH software and backup databases prepared by the Federal Emergency Management Agency.² This inventory was found to be the most comprehensive statewide data available that included building area for all land use types. The inventory was developed from the following information:

- Census of Population and Housing, 2000: Summary Tape File 1B Extract on CDROM prepared by the Bureau of Census.
- Census of Population and Housing, 2000: Summary Tape File 3 on CD-ROM prepared by the Bureau of Census.
- Dun & Bradstreet, Business Population Report aggregated by Standard Industrial Classification (SIC) and Census Block, May 2002.
- Department of Energy, Housing Characteristics 1993. Office of Energy Markets and End Use, DOE/EIA-0314 (93), June 1995.
- Department of Energy, A Look at Residential Energy Consumption in 1997, DOE/EIA-0632(97), November 1999.
- Department of Energy, A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures, DOE/EIA-0625(95), October 1998.

Statewide VOCs per building square feet are therefore: (239.6 tons/day x 2000 lbs/ton) / 22,435,267,518 sq. ft. = **2.14e-5 lbs/(sq.ft.-day)**

E-8 October 2017

¹ http://www.arb.ca.gov/app/emsinv/emssumcat_query.php?

F_YR=2008&F_DIV=-4&F_SEASON=A&SP=2009&F_AREA=CA#5

Detailed information is contained in the HAZUS-MH Earthquake Technical Manual, Chapter 3.2.1.3 available here: http://www.fema.gov/plan/prevent/hazus/

Appendix E3 - Consumer Products Use

Data Grouping	Total VOC (tons/day)	Population*	Total VOC (lbs/person-day)	Total Building Area (Square Feet)
2003 Survey Commercial (45.3% of 2003 Land Use Total)	47.4			
2003 Survey Residential (48.0% of 2003 Land Use Total)	50.3			
2003 Survey Industrial (6.7% of 2003 Land Use Total)	7.0			
2003 Survey Land Use Total (42.3% of Grand Total)	104.7			8,600,000,000 from South Coast AQMD draft staff report for consumer products rule
2003 Survey CARB Data Total	186.3	34,650,690	1.08E-02	
2006 Survey CARB Data Total	61.1	36,457,549	3.35E-03	
Grand Total	247.3		1.41E-02	22,435,267,518 from HAZUS-MH, data from late 1990's - early 2000's
*Data from American Communities Survey from the US Census		[Total VOC (lbs/building sq. ft.)	
2008 ARB Emission Inventory (Consumer Products)	239.6		` ' ' '	atewide Factor
South Coast AQMD Rule 1143 reduction to 300 g/l	11.3		2.04E-05	accinac i accon
(as of 1/1/11) If 25 g/L gets upheld by the courts	17.5	Ļ		outh Coast AQMD

E-9 October 2017

Degreaser for Parking Surface Summary

Statewide ROG emissions data from degreasers utilized for general purposes (aerosols and non-aerosols combined) was obtained from 2015 CARB Emission Inventory¹ and is 1.09 tons/day.

In 2010, 5.6 million vehicles were registered in Los Angeles County, and there were 9.6 million non-residential off-street parking spaces, which results in 1.7 parking spaces per registered car². Similarly, in San Francisco County, the census³ indicates that there are 166,455 (Publicly accessible car parking spaces minus on-street parking spaces: 441,905 – 275,450 = 166,455) non-residential off-street parking spaces. Further, EMFAC2014 data shows that there are 274,637 registered cars in 2015, which results in a 0.6 parking space per registered car.

Thus, based on this data, this analysis applies the most conservative parking data (e.g., there are approximately 0.6 parking spaces per registered car in California). Using CalEEMod's default of 400 sq ft/parking space, and CARB's 2014 EMFAC data of 25,647,944 registered cars in California for the year of 2015, the calculation to estimate the total parking area in California is as follows:

25,647,944 cars x 0.6 parking spaces/car x 400 sq ft/parking space = 6,15550656E+9 sq ft

Thus, the estimate for the statewide parking surface degreaser ROG emission factor is calculated as follows:

 $(1.09 \text{ tons ROG/day x } 2000 \text{ lbs/ton}) / (6,15550656E+9 \text{ sq ft}) = 3.54 * 10^{-7} \text{ lb ROG/sq ft/day}.$

E-10 October 2017

Available at: http://www.arb.ca.gov/app/emsinv/emseic_query.php?F_YR=2015&F_DIV=-4&F_SEASON=A&SP=2009&SPN=2009_Almanac&F_AREA=CA&F_EICSUM=510

Available at: http://www.citylab.com/commute/2015/12/parking-los-angeles-maps-study/418593/

³ Available at: http://sf.streetsblog.org/2014/05/22/census-sf-has-enough-public-parking-spaces-to-fill-cas-coastline

Fertilizers/Pesticides for City Parks/Golf Courses Summary

This is a new feature that was incorporated into CalEEMod Version 2016.3.1.

Statewide ROG emissions from fertilizers/pesticides for agricultural use was obtained from 2015 CARB Emission Inventory⁴. Statewide total ROG emissions from fertilizers/pesticides for agricultural (not including structural) use was 48.25 tons/day. The inventory data for Pesticides/Fertilizers was excluded from the statewide average because these chemicals are not utilized for groundskeeping activities associated with maintaining city parks and golf courses. According to the California Department of Food and Agriculture, the statewide total of agricultural acreage is 43 million acres⁵.

The calculation to determine what the average statewide ROG emissions factor would be from fertilizers/pesticides for agricultural use is as follows:

(48.25 tons ROG/day x 2000 lbs/ton)/(43 *10^6 acres * 43,560 sq ft/acre) = **5.152** * **10^(-8) Ib ROG/sq ft/day**. This statewide agricultural ROG emission factor is used as a surrogate emission factor for estimating ROG emissions associated with using fertilizers/pesticides for landscaping city parks and golf courses.

E-11 October 2017

⁴ Available at: http://www.arb.ca.gov/app/emsinv/emseic_query.php?F_YR=2015&F_DIV=-4&F_SEASON=A&SP=2009&SPN=2009_Almanac&F_AREA=CA&F_EICSUM=530

⁵ Available at: https://www.cdfa.ca.gov/agvision/docs/Agricultural Loss and Conservation.pdf

Analysis of Building Energy Use Data

The following information describes the steps and assumptions used in preparing building energy use estimates used in CalEEMod Version 2020.4.0 (See Appendix D, Table 8.1).

Background

Emissions result from activities in residential and commercial buildings when electricity and natural gas are used as energy sources. CalEEMod calculates criteria pollutant and GHG emissions from building natural gas combustion, and GHG emissions only from building electricity use (indirectly emitted at regional fossil fuel fired power plants). New California buildings must be designed to meet the building energy efficiency standards of Title 24, also known as the California Building Standards Code. Part 6 of Title 24 regulates energy uses including space heating and cooling, hot water heating, ventilation, and hardwired lighting. By committing to a percent improvement over Title 24, a development reduces its energy use and resulting criteria pollutant (natural gas use only) and GHG emissions.

The Title 24 standards have been updated three times (in 2013, 2016 and 2019)¹ since some of the California Residential Appliance Saturation Study (RASS) and California Commercial End-Use Survey (CEUS) data used to estimate residential and commercial building energy consumption in CalEEMod were compiled. The California Energy Commission (CEC) published reports estimating the percentage reductions in energy use resulting from the 2013, 2016 and 2019 standards. Based on the CEC's discussion on average savings for Title 24 improvements, the CEC savings percentages by end use are used to account for reductions in electricity and natural gas use due to the 2013, 2016 and 2019 updates to Title 24. Since energy use for each different system type (i.e., heating, cooling, water heating, and ventilation) as well as appliances is defined in this survey, the use of survey data with updates to Title 24 will allow for the application of mitigation measures aimed at reducing the energy use of these devices in a prescriptive manner.

Another mitigation measure to reduce a building's energy consumption, as well as the associated criteria pollutant and GHG emissions from natural gas combustion and electricity production, is the use of energy efficient appliances. For residential dwellings, typical builder-supplied appliances include refrigerators and dishwashers. Clothes washers and ceiling fans would be applicable if the builder supplied them. For commercial land uses, only energy-efficient refrigerators have been evaluated for grocery stores.

_

See http://www.energy.ca.gov/title24/2013standards/, http://www.energy.ca.gov/title24/2019standards/

Methodology

Datasets

The 2009 RASS² and 2002 CEUS³ datasets were used to estimate the energy intensities of residential and non-residential buildings, respectively, since the data is available for several land use categories in different forecasting climate zones in California. The RASS dataset further differentiates the energy use intensities between single-family, multi-family, and townhome residences.

The Energy Star and Other Climate Protection Partnerships 2008 Annual Report⁴ and subsequent Annual Reports were reviewed for typical reductions for energy-efficient appliances. ENERGY STAR residential refrigerators, clothes washers, dishwashers, and ceiling fans use 15%, 25%, 40%, and 50% less electricity than standard appliances, respectively. ENERGY STAR commercial refrigerators use 35% less electricity than standard appliances.

Calculations

RASS and CEUS datasets were used to obtain the energy intensities of different end use categories for different building types in different climate zones. Energy intensities from CEUS are given per square foot per year and used as presented. RASS presents Unit Energy Consumption (UEC) per dwelling unit per year and saturation values; the energy intensities used in this analysis are products of the UEC and saturation values.

Data for some forecasting climate zones is not presented in the CEUS and RASS studies. However, data from adjacent forecasting climate zones is assumed to be representative and substituted as follows:

For non-residential building types:

Climate Zone 11 used Climate Zone 9 data.

Climate Zone 12 used Climate Zone 9 data.

Climate Zone 14 used Climate Zone 1 data.

Climate Zone 15 used Climate Zone 10 data.

For residential building types:

Climate Zone 6 used Climate Zone 2 data.

Climate Zone 14 used Climate Zone 1 data.

Climate Zone 15 used Climate Zone 10 data.

_

Available at: https://www.energy.ca.gov/data-reports/surveys/2019-residental-appliance-saturation-study/2009-and-2003-residential-appliance

Available at: http://www.energy.ca.gov/ceus/

United States Environmental Protection Agency 2009. ENERGY STAR and Other Climate Protection Partnerships: 2008 Annual Report. Available at: https://www.energystar.gov/ia/partners/annualreports/annualreport 2008.pdf

It is important to note that the RASS and CEUS datasets use CEC's Forecasting Climate Zones (FCZs) and not the more commonplace Building Climate Zones. The user should ensure that they are entering the correct FCZ by referencing the climate zone map contained in this User's Guide and within the CalEEMod program.

Baseline Energy Use from Commercial Buildings

The CEUS data are based on 2002 consumption data. Because older commercial buildings tend to be less energy efficient, and the majority of the buildings in the survey were likely constructed before 2001, the CEUS data likely overestimate energy use for a 2001 Title 24-compliant commercial building. To account for updates since the 2001 Title 24 standards, percentage reductions for each end use category taken directly from the CEC's "Impact Analysis for 2005 Energy Efficiency Standards," "Impact Analysis 2008 Update to the California Energy Efficiency Standards for Residential and Nonresidential Buildings," "Impact Analysis, California's 2013 Building Energy Efficiency Standards", "Impact Analysis 2016 Update to the California Energy Efficiency Standards for Residential and Nonresidential Buildings", and "Impact Analysis 2019 Update to the California Energy Efficiency Standards for Residential and Nonresidential Buildings" reports were applied to the CEUS dataset for improvements from 2001 to 2005, 2005 to 2008, 2008 to 2013, 2013 to 2016, and 2016 to 2019, respectively (see Table 1). For the CEUS data, exterior lighting was assumed to be covered by Title 24 lighting and therefore has the full percentage reductions taken. Interior lighting was assumed to be 50% Title 24 and 50% non-Title 24 uses. Therefore only half of the reduction for lighting was applied. The resulting 2008 numbers were then used as baseline energy intensities. In CalEEMod, if the user selects use historical, the reductions only include up to the 2005 standards. The total baseline energy intensities are calculated as follows:

$$\begin{aligned} \text{Baseline} &= \sum \left[\text{T24}_{2001} \times \left(1 - \text{R}_{2001\text{-}2005} \right) \times \left(1 - \text{R}_{2005\text{-}2008} \right) \times \left(1 - \text{R}_{2008\text{-}2013} \right) \times \left(1 - \text{R}_{2013\text{-}2016} \right) \right) \times \left(1 - \text{R}_{2013\text{-}2016} \right) \right] \\ &+ \sum \text{NT24} \end{aligned}$$

Where:

Baseline = Total baseline energy intensities of building category

T24₂₀₀₁ = Energy intensities of Title 24 regulated end use from RASS or CEUS

 $R_{2001-2005}$ = Reduction from 2001 to 2005

 $R_{2005-2008} = Reduction from 2005 to 2008$

 $R_{2008-2013}$ = Reduction from 2008 to 2013

 $R_{2013-2016}$ = Reduction from 2013 to 2016

 $R_{2016-2019}$ = Reduction from 2016 to 2019

NT24 = Non-Title 24 regulated end use energy intensities

https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards

Table 1
Reduction in Title 24 Regulated End Use for Non-Residential Buildings

Energy Source	End Use	Reduction from 2001 to	Reduction from 2005 to 2008	Reduction from 2008 to 2013	Reduction from 2013 to 2016	Reduction from 2016 to 2019
	Heating	4.9%	37.2%	14.20%	4.60%	10.7%
	Ventilation	5.0%	1.5%	14.20%	4.60%	10.7%
	Refrigeration	0.0%	0.0%	0.0%	0.0%	0.0%
	Process	0.0%	0.0%	0.0%	0.0%	0.0%
	Office Equipment	0.0%	0.0%	0.0%	0.0%	0.0%
ity	Motors	0.0%	0.0%	0.0%	0.0%	0.0%
Electricity	Miscellaneous	0.0%	0.0%	0.0%	0.0%	0.0%
Ele	Interior Lighting	4.9%	5.9%	7.10%	2.30%	5.4%
	Water Heating	0.0%	0.0%	14.20%	4.60%	10.7%
	Cooking	0.0%	0.0%	0.0%	0.0%	0.0%
	Air Compressors	0.0%	0.0%	0.0%	0.0%	0.0%
	Cooling	6.7%	8.3%	14.20%	4.60%	10.7%
	Exterior Lighting	9.8%	11.7%	14.20%	4.60%	10.7%
	Cooking	0.0%	0.0%	0.0%	0.0%	0.0%
as	Cooling	10.4%	9.3%	4.50%	0.5%	1.0%
Natural Gas	Heating	3.1%	15.9%	4.50%	0.5%	1.0%
tura	Water Heating	0.0%	0.0%	4.50%	0.5%	1.0%
Nat	Process	0.0%	0.0%	0.0%	0.0%	0.0%
	Miscellaneous	0.0%	0.0%	0.0%	0.0%	0.0%

Baseline Energy Use from Residential Buildings

The 2009 RASS is based on 2008 consumption data, which is assumed to represent a residence compliant with the 2008 Title 24 standards. Nearly all residences surveyed in 2008 were built before this year, and hence, would have been subject to less stringent building energy standards. As such, similar to the CEUS data, the RASS data are likely to overestimate energy use for a 2008 Title 24-complaince residence. However, the RASS data also show that residential energy use is increasing per dwelling unit despite efficiency gains, when the 2009 RASS results are compared to the 2003 RASS results. The increase is due to larger dwelling unit square footage and a general increase in electricity use by appliances and consumer electronics. Continued increases in building energy use will compensate for some of the overestimation of energy use inherent in the assumption that the 2008 RASS data represents a 2008 Title 24 compliant residence.

The 2009 RASS data was compiled in the following manner. The Unit Energy Consumption (UEC) table for End Uses Summarized by Residency Type was used to determine the electricity and natural gas use and saturations for each of the end uses.

Program residential land uses were matched to the RASS categories as shown in Table 2.

Table 2
Program Land Use Matchings to 2009 RASS Residence Type

Program Residential Land Use	RASS Residence Type
Apartments High Rise	5+ Unit Apt
Apartments Low Rise	2-4 Unit Apt
Apartments Mid Rise	5+ Unit Apt
Condo/Townhouse	Town Home
Condo Townhouse High Rise	5+ Unit Apt
Congregate Cate (Assisted Living)	5+ Unit Apt
Mobile Home Park	Mobile Home
Retirement Community	2-4 Unit Apt
Single Family Housing	Single Family

The data were refined by substituting the data in the End Uses Summarized by Forecast Zones tables, which contain refined data for "weather sensitive end uses," differentiated by climate zone. As a final data refinement, the data contained in the Weather Sensitive End Uses by Climate Zone tables was substituted as applicable. These tables contain data for weather sensitive end uses differentiated by climate zone and residency type. From whichever RASS data table the UEC originated, the corresponding saturation fraction was used.

Similar to the CEUS dataset, a correction factor was applied to the 2009 RASS data to account for energy efficiency improvements from the 2013, 2016, and 2019 Title 24 standards. The Title 24 reductions were taken from the "Impact Analysis, California's 2013 Building Energy Efficiency Standards," "Impact Analysis 2016 Update to the California Energy Efficiency Standards for Residential and Nonresidential Buildings," and "Impact Analysis 2019 Update to the California Energy Efficiency Standards for Residential and Nonresidential Buildings" reports and applied to the Title 24 end uses as shown in Table 3, Table 4 and Table 5.

⁶ https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards

Table 3
Reduction in Title 24 Regulated End Use for Residential Buildings From 2008 to 2013

Energy	End Use	Reduct	ion from 2008 to	2013
Source	(As presented in RASS Dataset)	Multi- family	Single family	Town home
	Conv. Electric heat	23.3%	36.4%	23.3%
	HP Eheat	23.3%	36.4%	23.3%
	Aux Eheat	23.3%	36.4%	23.3%
	Furnace Fan	23.3%	36.4%	23.3%
	Central A/C	23.3%	36.4%	23.3%
	Room A/C	23.3%	36.4%	23.3%
	Evap Cooling	23.3%	36.4%	23.3%
	Water Heat	23.3%	36.4%	23.3%
	Solar Water Heater	0.0%	0.0%	0.0%
	Dryer	0.0%	0.0%	0.0%
	Clothes Washer	0.0%	0.0%	0.0%
	Dish Washer	0.0%	0.0%	0.0%
sity	First Refrigerator	0.0%	0.0%	0.0%
Electricity	Second Refrigerator	0.0%	0.0%	0.0%
Еle	Freezer	0.0%	0.0%	0.0%
	Pool Pump	0.0%	0.0%	0.0%
	Spa	0.0%	0.0%	0.0%
	Outdoor Lighting	0.0%	0.0%	0.0%
	Range/Oven	0.0%	0.0%	0.0%
	TV	0.0%	0.0%	0.0%
	Spa Electric Heat	0.0%	0.0%	0.0%
	Microwave	0.0%	0.0%	0.0%
	Home Office	0.0%	0.0%	0.0%
	PC	0.0%	0.0%	0.0%
	Water Bed	0.0%	0.0%	0.0%
	Well Pump	0.0%	0.0%	0.0%
	Miscellaneous	0.0%	0.0%	0.0%
	Primary Heat	3.8%	6.5%	3.8%
	Auxiliary Heat	3.8%	6.5%	3.8%
6	Conv. Gas Water Heat	3.8%	6.5%	3.8%
Natural Gas	Solar Water Heat w/Gas Backup	3.8%	6.5%	3.8%
<u>ral</u>	Dryer	0.0%	0.0%	0.0%
latu	Range/Oven	0.0%	0.0%	0.0%
Z	Pool Heat	0.0%	0.0%	0.0%
	Spa Heat	0.0%	0.0%	0.0%
	Miscellaneous	0.0%	0.0%	0.0%

Table 4
Reduction in Title 24 Regulated End Use for Residential Buildings from 2013 to 2016

Energy	End Use	Reduct	ion from 2013 to	2016
Source	(As presented in RASS Dataset)	Multi- family	Single family	Town home
	Conv. Electric heat	15.20%	11.70%	15.20%
	HP Eheat	15.20%	11.70%	15.20%
	Aux Eheat	15.20%	11.70%	15.20%
	Furnace Fan	15.20%	11.70%	15.20%
	Central A/C	15.20%	11.70%	15.20%
	Room A/C	15.20%	11.70%	15.20%
	Evap Cooling	15.20%	11.70%	15.20%
	Water Heat	15.20%	11.70%	15.20%
	Solar Water Heater	0.0%	0.0%	0.0%
	Dryer	0.0%	0.0%	0.0%
	Clothes Washer	0.0%	0.0%	0.0%
	Dish Washer	0.0%	0.0%	0.0%
ity	First Refrigerator	0.0%	0.0%	0.0%
Electricity	Second Refrigerator	0.0%	0.0%	0.0%
Elec	Freezer	0.0%	0.0%	0.0%
	Pool Pump	0.0%	0.0%	0.0%
	Spa	0.0%	0.0%	0.0%
	Outdoor Lighting	0.0%	0.0%	0.0%
	Range/Oven	0.0%	0.0%	0.0%
	TV	0.0%	0.0%	0.0%
	Spa Electric Heat	0.0%	0.0%	0.0%
	Microwave	0.0%	0.0%	0.0%
	Home Office	0.0%	0.0%	0.0%
	PC	0.0%	0.0%	0.0%
	Water Bed	0.0%	0.0%	0.0%
	Well Pump	0.0%	0.0%	0.0%
	Miscellaneous	0.0%	0.0%	0.0%
	Primary Heat	30.70%	21.00%	30.70%
	Auxiliary Heat	30.70%	21.00%	30.70%
,	Conv. Gas Water Heat	30.70%	21.00%	30.70%
Gas	Solar Water Heat w/Gas Backup	30.70%	21.00%	30.70%
Natural Gas	Dryer	0.0%	0.0%	0.0%
latu	Range/Oven	0.0%	0.0%	0.0%
Z	Pool Heat	0.0%	0.0%	0.0%
	Spa Heat	0.0%	0.0%	0.0%
	Miscellaneous	0.0%	0.0%	0.0%

Table 5
Reduction in Title 24 Regulated End Use for Residential Buildings from 2016 to 2019

Energy	End Use	Reduction from 2016 to 2019			
Source	(As presented in RASS Dataset)	Multi- family	Single family	Town home	
	Conv. Electric heat	78.7%	79.0%	78.7%	
	HP Eheat	78.7%	79.0%	78.7%	
	Aux Eheat	78.7%	79.0%	78.7%	
	Furnace Fan	78.7%	79.0%	78.7%	
	Central A/C	78.7%	79.0%	78.7%	
	Room A/C	78.7%	79.0%	78.7%	
	Evap Cooling	78.7%	79.0%	78.7%	
	Water Heat	78.7%	79.0%	78.7%	
	Solar Water Heater	0.0%	0.0%	0.0%	
	Dryer	0.0%	0.0%	0.0%	
	Clothes Washer	0.0%	0.0%	0.0%	
	Dish Washer	0.0%	0.0%	0.0%	
ity	First Refrigerator	0.0%	0.0%	0.0%	
∃lectricity	Second Refrigerator	0.0%	0.0%	0.0%	
Ele	Freezer	0.0%	0.0%	0.0%	
	Pool Pump	0.0%	0.0%	0.0%	
	Spa	0.0%	0.0%	0.0%	
	Outdoor Lighting	0.0%	0.0%	0.0%	
	Range/Oven	0.0%	0.0%	0.0%	
	TV	0.0%	0.0%	0.0%	
	Spa Electric Heat	0.0%	0.0%	0.0%	
	Microwave	0.0%	0.0%	0.0%	
	Home Office	0.0%	0.0%	0.0%	
	PC	0.0%	0.0%	0.0%	
	Water Bed	0.0%	0.0%	0.0%	
	Well Pump	0.0%	0.0%	0.0%	
	Miscellaneous	0.0%	0.0%	0.0%	
	Primary Heat	4.7%	9.4%	4.7%	
	Auxiliary Heat	4.7%	9.4%	4.7%	
"	Conv. Gas Water Heat	4.7%	9.4%	4.7%	
Gas	Solar Water Heat w/Gas Backup	4.7%	9.4%	4.7%	
Natural Gas	Dryer	0.0%	0.0%	0.0%	
latu	Range/Oven	0.0%	0.0%	0.0%	
_	Pool Heat	0.0%	0.0%	0.0%	
	Spa Heat	0.0%	0.0%	0.0%	
	Miscellaneous	0.0%	0.0%	0.0%	

Introduction

This paper recommends electricity energy use rates to calculate the energy consumption from the operation of car parking facilities in California. The energy uses considered include lighting, ventilation, and elevator use. Recommendations apply to open air parking lots, parking facilities with open walls and access to fresh air, and fully enclosed parking facilities, such as those that are underground, and require ventilation systems. These energy use rates allow the user to calculate lighting, ventilation and elevator use energy impacts separately.

Purpose

This effort was undertaken in conjunction with the CalEEMod Land Use Model ("CalEEMod") 2012 updates. Our intent is to determine if enough information is available to support the development of energy use rates for parking facilities in CalEEMod, and if so, what these recommended energy use rates should be.

Limitations

Energy use rates from water pumps, for fire safety systems or for storm water removal, were not considered because CalEEMod does not include emissions estimates from any stationary sources located at land use development projects. Our research has not identified energy use rates for operational systems, such as from systems designed to collect payments or secure the property, such as computer, ticketing, camera surveillance, or automated and human-activated gate systems. To our knowledge, research is not available to determine in which situations or size of facilities these systems would be utilized. Likewise, research is not available to determine in which situations parking facilities include energy use from natural gas, heating, cooling, and water delivery. Therefore, these energy use rates are not considered.

Proposed Energy Use Rates: Lighting and Ventilation

Energy Star is a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy to promote energy efficient products and practices. As part of a larger project to evaluate the efficiency of buildings, Energy Star developed energy factors for parking facilities based on data from the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE), and a review of existing building codes and local ordinances in the United States. **Table 1** below presents factors for energy use in parking facilities, based on the Energy Star "Performance Ratings Technical Methodology for Parking" technical paper.ⁱ

Table 1: Energy Use for Lighting and Ventilation by Parking Type					
		Hourly Watts or Horse Power Per Square Foot	Assumed Hours of Operation		
Open Parking	Lighting	0.15 W/ft ²	16 hours/day		
	Ventilation	none			
Unenclosed Parking (no	Lighting	0.30 W/ft ²	24 hours/day		
walls)	Ventilation	none			
Fully Enclosed Parking	Lighting	0.30 W/ft ²	24 hours/day		
(walls)	Ventilation ⁽¹⁾⁽²⁾	0.6 hp/1,000 ft ²			

Notes:

- 1. Ventilation is characterized in terms of flow rate (cubic feet per minute per square foot, cfm/ft² equals 0.6 horse power per 1,000ft²).
- 2. One horse power(hp) is equal to 0.746 kiloWatts.

Table 2 shows the results of these factors in annual kWh per square foot of parking area.

Table 2: Energy Use for Lighting and Ventilation by Parking Type						
Type of Parking	Use	Days/Year	Hours/Day	Annual	Total Annual	
				kWh/SqFt	kWh/SqFt	
Open Parking	Lighting	365	16	0.876	0.876	
	(No) Ventilation					
Unenclosed Parking	Lighting	365	24	2.63	2.63	
(no walls)	(No) Ventilation					
Fully Enclosed	Lighting	365	24	2.63	6.55	
Parking (walls)	Ventilation	303	24	3.92	0.55	

The Energy Star energy rates are generally consistent with California Title 24 standards. The Title 24 year 2008 standard for indoor parking structure lighting is 0.30 Watts per foot squared; Title 24 year 2005 outdoor parking lighting standard is 0.15 Watts per foot squared; and the proposed Title 24 year 2013 standard for ventilation is 0.6 horse power per 1,000 feet squared. We have not identified any other sources to compare these factors to that are more appropriate. Note that the energy intensity of parking structures is one of the few land uses that the California Energy Commission (CEC) does not include in the California Commercial End-Use Survey (CEUS) analysis.

None of the other land uses already accounted for in CalEEMod have energy use rates as low as the Energy Star rates for parking facilities, and this is to be expected. Based on the analysis above, parking facilities use between 0.05 and 0.40 kW per square foot per year, and this is much lower when compared to some of the land uses already represented in CalEEMod. The lower end of electric energy rates in CalEEMod includes manufacturing, unrefrigerated warehouses and racquet ball clubs. Depending upon the climate zone, CalEEMod estimates the kW per square foot in unrefrigerated warehouses to be between 3 and 10 kW, and for racquet clubs between 2 and 12 kW. While this doesn't confirm the appropriateness of the Energy Star energy use rates, it is reasonable that parking facilities would have lower energy use rates than other uses.

Proposed Energy Use Rates: Elevators

There are various elevator energy calculations available on the web^{iv}. To our knowledge, none are independently verified by a public, private or government agency. This section presents three energy use rates for elevators. Energy use rates will depend on the manufacturer, the type and size of elevator, how many floors the elevator serves, the idle mode settings selected, how often the elevator is used and with how many people. For example, buildings with seven or fewer floors may use elevators powered by hydraulic motors, whereas buildings with eight or more floors will need more powerful and energy-intense "geared or gearless traction" elevators. These elevators are driven by direct current motor-generator sets (DC MG), silicon controlled rectified (SCR) DC motors, or variable voltage variable frequency (VVVF) drives coupled to alternate current (AC) motors. All of these configurations provide variable and high-speed operation and provide regeneration, but exhibit different operating efficiencies.

For our purposes, it is assumed that a parking structure elevator will serve ten or fewer floors. Elevators serving more than 10 floors are likely to be located in buildings with uses in addition to parking, and therefore CalEEMod will assume the energy use rates (including elevator use) associated with the other land uses in its calculations.

Table 3 presents the **first example**. Dover Elevators has calculated the average kWh required per day for a single elevator equipped with MG, SCR, and VVVF drives. Based on these daily estimates, Table 3 calculates the per hour and annual energy use for two to five floors and six to ten floors based on the type of elevator technology employed.

Tak	Table 3: Average Energy Consumption (kWh) for 2,500 Pound Capacity Elevators (1)						
Number of	kW E	kW Energy Use Based On How Electrical Current is Controlled (per hour)					
Floors		e Voltage Variable quency (VVVF) Silicon Controlled Rectified (SCR) DC MG Sets (I		ets (MG)			
2 to 5	3.87	75	6.625		9		
6 to 10	4.87	7 5	6.75		9.5		
Number of	kW En	kW Energy Use Based On How Electrical Current is Controlled (per year) ⁽²⁾					
Floors	16 hrs/day	24 hrs/day	16 hrs/day	24 hrs/day	16 hrs/day	24 hrs/day	
2 to 5	22,630	33,945	38,690	58,035	52,560	78,840	
6 to 10	28,470	42,705	39,420	59,130	55,480	83,220	

Notes:

- 1. Based on calculations from Dover Elevators.
- 2. Combines calculations from Dover Elevators and Energy Star assumptions about hours of operations per day.

The **second example** is cited in the California Energy Commission (CEC) *2013 Nonresidential ACM Manual – Draft Version*, June 2011, (the "CEC Draft Manual")^{vi}. These estimates are based on a TIAX

report cited by the U.S. Energy Information Administration entitled, "Commercial and Residential Spector Miscellaneous Electricity Consumption: Y2005 and Projections to 2030" (the "TIAX Report") and includes buildings with at least 50 percent of space dedicated to non-residential uses, including agricultural, industrial, schools, and institutional uses^{vii}. **Table 4** below presents unit energy consumption data from a sample of approximately 5,200 buildings for 2,500 pound capacity elevators, based on time spent in different elevator modes – active, ready, standby, and off:

Table 4: Average Energy Consumption (kWh) for 2500 Pound Capacity Elevators (1)						
Elevator Mode	Percent of Time in Each Mode	Annual Hours in Each Mode	kWh Use in Each Mode	Annual kWh		
Active	3%	300	10	300		
Ready	84%	7,365	0.5	3683		
Standby	13%	1,095	0.25	274		
Off	0%	0	0	0		
Total	100%	8760 ⁽²⁾	11	6,956 ⁽³⁾		

Notes:

- 1. TIAX LLC. Commercial and Residential Spector Miscellaneous Electricity Consumption: Y2005 and Projections to 2030. September 22, 2006.
- 2. Assumes operation 365 days per year for 24 hours per day.
- 3. This energy use represents rates from 2003 projected out to 2005. Year 2005 shows only a slight decrease from the year 2003 baseline.

The differences in energy use estimates in Table 3 and Table 4 is astonishing. The TIAX Report estimates the energy use from the average 2,500 pound capacity elevator to be approximately 20 percent of the kWhs needed for a 24-hour day of the least-energy intensive elevator in the Dover estimates.

The **third example** is based on calculations provided by Kone Elevators documenting the energy savings between a hydraulic elevator and Kone's elevators with the most energy efficient features selected. These features include energy-saving LED lighting, standby modes for lights, signalization, ceiling fans, and destination control systems, a lightweight hoisting system, and energy regenerating technology. According to Kone, the bulk of energy use in hydraulic elevators comes from the hoisting system. **Table 5** below is based on the information presented by Kone on annual energy consumption from hydraulic elevators and its "EcoSpace" option.

Table 5: Kone Average Energy Consumption (kWh) for 3500 Pound Capacity Elevator (1)					
Energy Use	Hydraulic Elevator (kWh/year)	Kone EcoSpace Elevator (kWh/year)	Percent Reduction		
Lighting	2,015	153	- 92%		
Electrification	1,139	1,360	+19%		
Hoisting	6,024	895	-85%		
Total	9,178	2,408	-74%		

Notes

1. Based on information provided by Kone, Inc.

These estimates are based on a 3,500 pound capacity serving four floors with 200,000 starts per year, or 34 starts an hour, assuming 16 hours of operation per day.

Evaluation of Data

It is a challenge to compare the three available examples. The Dover (*first example*) data are detailed and offer specifics about energy use based on the types of elevator systems, but no information on the usage, such as hours per day of operation, speed, or starts per day. This source also presents energy consumption much higher than the other two sources. The Dover information was collected from a website maintained by Washington State University and the Western Area Power Administration and is not dated. It is not clear if these data are current. The Kone (*third example*) estimates are also based on very specific elevator specifications that will not necessarily transfer to our application, which requires a much more general approach. It is not anticipated that CalEEMod users will have detailed information about the size, capacity, usage rates, and type of elevators (hydraulic, geared or gearless traction, etc.) or other specifications, such as type of lighting or ceiling fans selected.

The CEC Draft Manual reports that that elevators are custom designed for each building and "little information is known on how to model elevators." Our research also resulted in few sources that were either specific to the manufacturer or very general.

TIAX (second example) is a reliable and reputable company who has conducted a robust study (5,200 buildings) of a variety of elevator types that would be more reflective of the real world and provides a simpler and direct method of determining energy use from an average-used elevator. The question still remains as to whether there is a standard in determining the number of elevators for a size of a parking lot. However, aside from the Americans with Disabilities Act requiring "one passenger elevator serving each level in all multi-story buildings," a building code does not seem to exist requiring how many per size or square footage. It should be noted that the Americans with Disabilities Act does allow parking structures that provide the correct number of accessible spaces on the ground floor to not install an elevator. As elevators would increase building costs and consume valuable square feet, it seems reasonable to conclude that parking structures are constructed with as few elevators as required by local building codes.

The TIAX Report does include energy use rate projections for a selected future year (2015, 2020, etc.) based on project build out year^x but, at this time, such programming would be more complex and would require more information from the User. Thus, it is concluded for the default to use a fixed value in time.

Ultimately, decisions regarding the number of elevators is left to the developer who may choose based on a number of reasons. However, there are other sources, including this "rule of thumb" based on all modern American construction (not just commercial buildings):

Table 6: Estimates for Number of Elevators Needed ⁽¹⁾						
No. of Floors Building Meters Squared (gross) Building Square Feet (gross) Recommended F Elevators						
Up to 3	5,000	53,820	1			
4 or more	6,000	64,583	2			
4 of more	10,000	107,639	3			

Notes:

1. Bhatia, A. *Building Elevator Systems*, CED Engineering.com. Course No: A06-001. Note that if elevators are distributed throughout the building, instead of at a centralized bank of elevators, to account for inefficiencies and imbalances in demand, increase the number of elevators by 60 percent.

Using TIAX study conclusion that one 2500 pound elevator consumes 7,000 kWh per year (**Table 4**) and the number of elevators for a particular sized parking lot (**Table 6**), data can be extrapolated to determine the energy factor to apply (**Table 7**).

Table 7: Annual kWh per Square Foot					
Gross Sq Ft	Elevators	Annual kWh	Annual kWh/square foot		
54,000	1	7000	0.13		
65,000	2	14000	0.22		
108,000	3	21000	0.19		
162,000	4	28000	0.17		
216,000	5	35000	0.16		
270,000	6	42000	0.16		
324,000	7	49000	0.15		
378,000	8	56000	0.15		
432,000	9	63000	0.15		
486,000	10	70000	0.14		
540,000	11	77000	0.14		
594,000	12	84000	0.14		
648,000	13	91000	0.14		
702,000	14	98000	0.14		
756,000	15	105000	0.14		
810,000	16	112000	0.14		
864,000	17	119000	0.14		
918,000	18	126000	0.14		
972,000	19	133000	0.14		
1,026,000	20	140000	0.14		
1,080,000	21	147000	0.14		
1,134,000	22	154000	0.14		
1,188,000	23	161000	0.14		

Conclusion

For the purposes of estimating energy use rates in parking lots and structures in California, CalEEMod should base energy use rate assumptions on the Energy Star estimates for lighting and ventilation. That would require CalEEMod to establish the following new sub-land uses (*with energy impact calculated*) under Parking:

- 1. Parking lot (lighting energy use only)
- 2. Unenclosed parking structure (lighting energy use only)
- 3. Enclosed parking structure (lighting and ventilation energy use)
- 4. Unenclosed parking structure with elevator (lighting and elevator energy use)
- 5. Enclosed parking structure with elevator (lighting, ventilation, and elevator energy use)

The default energy factor (annual kWh/square foot) recommended and used in CalEEMod is 0.19 annual kWh/sq ft which is based on the real data in Tables 4 and 6 and not the highest or lowest factor. CalEEMod will provide the ability for the User to override the default factor if the number of elevators is known (per total square feet) and is different than the default. For example, if a parking lot structure is known to be 200,000 sq ft with 6 elevators, then using the 7,000 annual kWh/elevator x 6 elevators is 42,000 annual kWh/200,000 sq ft equals a new factor of 0.21 annual kWh/sq ft that would be used to replace the CalEEMod default factor of 0.19 annual kWh/sq ft. In addition, if new data is known about kWh usage from a particular elevator (e.g., green elevator technology), the same methodology could be applied replacing the 7,000 annual kWh/elevator with a new known value.

Endnotes

www.energystar.gov/ Energy Star Performance Ratings Technical Methodology for Parking. http://www.energystar.gov/ia/business/evaluate_performance/parking_tech_desc.pdf.

Parking and Title 24 standards: We have not adjusted the outdoor parking lighting factors in the Energy Star to meet 2008 or proposed 2013 Title 24 standards, which are lower than 2005 requirements, because additional lighting is often allowed in outdoor zones that are considered in need of additional safety lighting.

California Energy Commission. http://www.energy.ca.gov/ceus/

For example, see http://www.kone.com/media/en_US/green/index.html

^v Washington State University and Western Area Power Administration. Energyexperts.org. http://energyexperts.org/EnergySolutionsDatabase/ResourceDetail.aspx?id=1709

vi CEC 2013 Nonresidential ACM Manual – Draft Version (CEC Alternative Calculation Method – June 2011). http://www.energy.ca.gov/title24/2013standards/prerulemaking/documents/2011-06-21 workshop/review/2013 NACM Approval Manual Draft.pdf. The CEC website reports the final document will be released in January 2013.

vii TIAX LLC. Commercial and Residential Spector Miscellaneous Electricity Consumption: Y2005 and Projections to 2030. September 22, 2006. http://wpui.wisc.edu/news/EIA%20Posts/TIAX_EIA_MiscElecReport.pdf

viii Kone. Kone Eco-efficient Solutions (Brochure); Elevator Energy Calculation Report, 10/11/2011. Provided by Kone, Inc.

^{ix} Email communication with the US Access Board (tel: 800-872-2253 email: ta@access-board.gov). The US Access Board referred us to local building codes to determine elevator requirements.

^x Table 4 above presents the 2003 energy use average projected to 2005. The TIAX Report projects elevator energy use rates out in 5 year increments to 2030, however, the estimated decrease in energy use is slight between year 2005 and 2030 and unlikely to affect model results.

Three Studies were Conducted in 2012 on the Amount of Parking Lot Area was Painted (for parking stalls, markings, etc)

Since the release of CalEEMod v2011.1.1, the percentage of space in parking lots that is painted has been questioned, so it was decided to re-evaluate the default currently used. A literature search was performed, but no studies were identified that provided information on the amount of coatings used for parking lots. As a result, contractors were contacted to assist in this research effort. It was determined that most contractors contacted use large volume containers of coatings and do not keep record of the specific amount used on individual parking lot jobs. Consequently, three of the California air district provided data on their own lots and the size of area painted to generate the following data. The compilation relies on the assumption that only one coat of paint was used to make the markings (e.g., stall lines, handicap symbols, no-parking curbs, traffic direction arrows, etc.). The results of the three studies showed a range in percentage of coatings applied. Because the sample size is so small, it was decided to set the default at the highest percentage of the 3 studies (6 percent of total square footage area). Using the highest percentage would also generate a more conservative impact evaluation of VOC emissions from coatings on parking lots. As additional information is obtained the default will be reevaluated and modified as necessary.

SMAQMD Parking Garage Painted Area Calculation (May 15, 2012)

19,000 Gross square footage of parking garage

1,000 Subtract office, storage cage, etc.

18,000 Net parking garage square footage

17 2 deep parking stalls

3456 square inches for a 2 deep parking stall paint

407.7 square feet for 17 2 deep parking stalls paint

12 3 deep parking stalls

5376 square inches for a 3 deep parking stall paint

447.7 square feet for 12 3 deep parking stalls paint

4 disabled parking stalls

2160 square inches for 1 handicapped parking stall paint

60.0 square feet for 4 handicapped parking stalls paint

36.0 square feet of paint for handicapped square parking signs (4 of them) (3 feet x 3 feet squares)

14.0 square feet of no parking signs next to handicapped stalls (4 of them) (3.5 feet x 1 feet rectangles)

77.0 square feet of extra space/diagonals handicapped area next to and above parking stall

(5 8 feet diagonals, 4 11 feet diagonals, 5 6 feet diagonals, 13 9 feet diagonals)

1042.4 square feet for paint in SMAQMD parking garage

5.8% percent of total square footage of parking garage

E-28 October 2017

4 inches - width of stall painted line

4 inches - width of stall painted line

216 inches - length of side stall line handicapped

108 inches - length of top stall line handicapped

192 inches - length of side stall line

96 inches - length of top stall line

Actual Surface Area Painted & Emissions - South Coast AQMD Parking Lot

(June 2012) Line Type	Width (ft)	Length (ft)	Quantity	Total Painted Surface Area (sq ft)	
Parking Stall Lines	0.33	18	224	1343.87	
"Compact" Denotation	1.00	5	7	35.00	
Arrows	4.00	3.5	6	84.00	
"Slow 5 MPH" Denotation	5.00	6	2	60.00	
Handicap Lines	0.33	18	8	48.00	
Handicap Symbol	3.00	3	4	36.00	
No Parking Red Curbs	0.50	32	4	64.00	
No Parking Red Curbs	0.50	13	2	13.00	
No Parking Red Curbs	1.00	20	1	20.00	
No Parking Red Curbs	0.50	11	2	11.00	
"Stop" Denotation	6.00	8	1	48.00	
		Δ	actual =	1763	Total Actual Painted Surface Area (sq ft) South Coast
NOTE: The South Coast AQMD's	oarking stalls were sep			37,869	AQMD Repaved Parking Lot Area (sq ft)

(112), however, most commercial/recreational parking lots use double lines (224).

4.7% % Painted Using Single Coat

Actual Surface Area Painted & Emissions - SLO County APCD Parking Lot (June 2012)

				Total Painte Surface Are	
Line Type	Width (ft)	Length (ft)	Quantity	(sq ft)	Width (inches)
Parking Place	0.33	18	29	174.00	4
Handicap Lines	0.33	9	5	15.00	4
Handicap Symbol	3.50	3.5	1	12.25	-
Bike Locker Protection	0.33	4	7	9.33	4
Red Curbs - Horizontal Paint	0.33	232	1	77.33	4
Red Curbs - Vertical Paint	0.50	232	1	116.00	6
			A _{actual} =	404	Total Actual Painte

ed Surface Area (sq ft) APCD Parking Lot Size (sq ft) 14,900

2.7% % Painted Using Single Coat

E-29 October 2017

Default Water Use Determination for Industrial Land Uses (for Version 2013.2 and later)

Since the release of CalEEMod v2011.1.1, the default water usage from industrial land uses has been questioned, so it was decided to re-evaluate the default currently used. The following are the assumptions used to determine the operation period of a typical industrial facility and the published water usage values (see web link). Specifically for industrial land use categories, the default water use rate is 925 gallons/workday/thousand square feet. This value was computed by dividing the annual water use in California industry (Table ES-6 in Gleick et al. 2002) by the industrial work area in California (Dun & Bradstreet, Business Population Report aggregated by Standard Industrial Classification (SIC) and Census Block, May 2002) where 225 was the annual number of workdays in a year.

365 days/year

7 days/week

52.14 weeks/year

5 Workdays/week

260.71 Potential Workdays/year

36 Average Holidays + Maintenance Shutdowns/year

225 Probable Days/year of Industrial Operations

AF Acre-foot

SF Square-foot

225 Industrial Work Days - see CalEEMod User Manual Appendix A

TAF; Best Estimate of Water Use/year by California Industry - As identified in Table ES-665 6 of Gleick et al. 2003:

www.pacinst.org/reports/urban usage/waste not want not full report.pdf

2,955.6 AF/Work Day; Best Estimate of Water Used by CA Industry/Industrial Work Day

325,851.4 Gal/AF (conversion)

963,071,916 Gal Used by CA Industry/Industrial Work Day

TSF of Industrial Work Area in CA - As identified by: Dun & Bradstreet, Business

1,041,386

Population Report aggregated by Standard Industrial Classification (SIC) and Census
Block, May 2002, the Industrial component reference identified in the CalEEMod User
Manual Appendix E on Consumer Products.

925 Gals/WorkDay/TSF

E-30 October 2017

Default Solid Waste Generation for Industrial Land Uses (for version 2013.2 and later)

Since the release of CalEEMod v2011.1.1, the default solid waste generation from industrial land uses has been questioned, so it was decided to re-evaluate the default currently used. There is limited information available linking employment and solid waste generation for the various individual industrial land uses types as analyzed in CalEEMod. However, the Southern California Association of Governments (SCAG) that represents the six-county region of Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial counties conducted a study in 2001 called the 'Employment Density Study' (http://www.scag.ca.gov/forecast/downloads/employ_den.pdf). Given the known challenge in locating statewide data and the fact that SCAG data represents close to half the state's population, the information is quasi-applicable to the state. In the study, SCAG identifies the following region-wide median employment densities for these specific industrial land use types:

Light manufacturing = 924 square foot (sq ft)/employee Warehouse = 1,225 sq ft/employee

Using the 1999 CalRecycle Waste Characterization generation rate of 1.15 tons/employee/year, it has been determined to modify the current default of solid waste generation for industrial land use types using the following rates in CalEEMod:

Warehouses (all types) = 0.94 tons/1000 sq ft/year All other industrial = 1.24 tons/1000 sq ft/year

Employee based rate for all industrial uses = 1.15 tons/employee/year

These rates seem more in line with other land use generation rates and also have the advantage of using employment densities that correspond more closely with trip generation rates.

E-31 October 2017

Default N Load Factor for Wastewater Calculations (for version 2013.2 and later)

Since the release of CalEEMod v2011.1.1, the Sanitation Districts of Sacramento and Los Angeles have raised a concern that the default N load factor of 40mg/L from USEPA's database (2008) is too high. The N load is the mass of nitrogen dischared per volume of wastewater effluent. The factor is used in calculating nitrous oxide emissions produced when treated wastewater is discharged in aquatic environments such as rivers and estuaries. A high N load factor will overestimate the GHG emission throughout much of the State. US EPA has provided an online database (http://cfpub.epa.gov/dmr/ez_search.cfm) for plant-specific effluent results for various pollutants including nitrogen. Performing a query just for California, calculations show that the statewide average would be 26 mg/l instead of 40 mg/l (current default). CalEEMod does not, at this time, allow the user to enter plant-specific numbers, so the default offers a more representative number for the state.

The following equation was used to determine statewide average:

 $Flow-weighted\ effluent\ Nitrogen\ in\ California\ (mg/L)=203,953,373\ (N-lbs)/year * (2586502000\ Gals/day)^(-1)*(1year/(365.25\ days))*(453592.37mg/1lb)*(1Gal/3.785l)= \textbf{25.87}\ mg/l$

The following data was retrieved from the USEPA database (2013) for the equation:

Source: http://cfpub.epa.gov/dmr/ez search.cfm

Statewide Sum: 203,953,373 lb/yr 2,586,502,000 gal/day

Calif POTWs	Total Pounds (lbs/yr)	Average Flow (MGD)	
CA0107417*	1,020,535	17.4	*Corrected to reflect actual
CA0107611*	755,263	15.4	plant effluent as per discussion
CA0053813	47,848,683	273	with plant facility staff
CA0109991	46,073,447	267	
CA0107409	15,195,624	267	
CA0110604	12,660,447	152	
CA0077682	12,360,199	146	
CA0037664	9,556,191	148	
CA0037702	7,402,404	66.25	
CA0037869	5,197,299	61.4	
CA0038008	5,197,299	61.4	
CA0037613	4,822,150	57.3	
CA0037648	3,237,605	39.5	
CA0107395	2,620,463	24.6	
CA0054097	2,102,347	21.6	
CA0037681	1,886,655	32.4	
CA0053911	1,450,084	57.01	
CA0038318	1,284,429	1.18	
CA0107433	1,113,164	12.4	
CA0037737	962,571	6.88	
CA0048551	949,029	8.038	

E-32 October 2017

Appendix E10 - Default N Load Factor For Wastewater Calculations

CA0037541	913,876	12.2
CA0048194	904,330	8.46
CA0038130	860,572	9.29
CA0038547	778,946	8.77
CA0038628	762,472	9.31
CA0056227	727,201	27.7
CA8000304	709,805	34.8
CA0105350	683,282	29.4
CA8000409	608,790	26.7
CA0038024	562,781	4.606
CA0054011	553,291	19.6
CA0104523	525,445	3.69
CA0079189	504,795	8.46
CA0038539	484,861	8.94
CA0048216	479,712	5.09
CA0048160	456,062	4.054
CA0053856	417,294	13.09
CA0048143	367,016	15.2
CA0054119	362,093	12.2
CA0053953	352,926	14.2
CA0049224	349,790	3.89
CA0107981	349,112	10.3
CA0079103	344,510	10.6
CA0079260	333,956	3.069
CA0104973	316,751	4.015
CA0056294	285,797	9.77
CA7000009	283,784	2.73
CA0037788	262,829	3.41
CA0079219	261,626	8.013
CA0037796	255,924	3.082
CA0108031	254,610	1.21
CA0037842	244,169	100
CA0055221	241,546	8.83
CA0054216	202,111	14.5
CA0104426	196,783	3.54
CA0053651	194,981	5.63
CA0053716	190,189	8.047
CA0038091	182,140	2.52
CA0079138	168,719	26.6
CA0105295	165,877	5.89
CA8000188	162,763	6.23
CA0037532	160,569	1.53
CA0055531	154,954	6.71
CA0104400	145,679	1.24
CA0053619	142,296	4.83
CA0022764	115,563	4.27
CA0054313	110,962	4.97
		1.57

E-33 October 2017

Appendix E10 - Default N Load Factor For Wastewater Calculations

CA0084573	100,294	6.54
CA0053597	97,150	3.18
CA0082589	94,621	3.37
CA0047996	92,294	0.71
CA8000316	86,643	5.74
CA0079235	84,324	2.97
CA0082660	80,744	3.23
CA0105015	76,603	0.72
CA8000027	74,164	8.066
CA0079651	73,795	1.15
CA0037575	71,906	8.35
CA0056014	67,209	3.36
CA0079154	63,785	9.06
CA8000383	59,920	2.81
CA0079731	59,579	7.42
CA0037621	58,350	11.05
CA0079197	57,484	3.92
CA0079049	52,185	4.65
CA8000326	47,842	3.42
CA0038067	40,548	1.54
CA0079111	36,353	49.2
CA0102695	35,497	0.96
CA0022888	35,088	1.93
CA0077704	34,804	1.22
CA0085235	34,282	1.96
CA0038598	30,598	1.68
CA0037753	30,300	0.63
CA0078671	29,039	1.601
CA0102822	28,556	8.65
CA0037826	27,040	0.74
CA0037711	26,202	2.76
CA0053961	25,767	1.99
CA0109045	24,679	3.54
CA0079022	23,671	0.89
CA0105619	19,761	3.77
CA0023345	19,753	0.91
CA0079511	18,563	0.97
CA0037834	18,079	20.1
CA0079243	16,843	3.025
CA0048127	15,525	2.83
CA0037810	13,909	4.104
CA0022756	13,284	1.67
CA0037851	12,955	2.25
CA0081434	12,534	1.209
CA0079316	12,134	2.201
CA0023060	12,025	0.74
CA0081558	11,221	5.702

E-34 October 2017

Appendix E10 - Default N Load Factor For Wastewater Calculations

CA0078981	10,228	0.54
CA0085260	9,257	0.34
CA0105376	8,569	2.82
CA0037800	7,266	2.18
CA8000395	6,652	0.58
CA0024449	6,336	9.048
CA0054372	6,277	0.38
CA8000100	5,890	0.81
CA0078891	4,768	1.48
CA0038776	4,591	3.017
CA0084727	4,292	0.107
CA0077712	4,075	1.56
CA0107492	3,943	0.84
CA0022730	3,912	0.42
CA0038768	2,485	3.019
CA0084239	2,480	0.063
CA0004233		9.86
	2,146	
CA0025135	1,521	1.12
CA0078662	1,493	4.71
CA0037770	1,309	1.72
CA0084271	1,252	0.54
CA0048151	1,059	1.074
CA0079898	787	2.25
CA0079081	749	6.54
CA0047364	743	1.33
CA0079502	706	9.209
CA0078956	613	0.74
CA0078590	481	1.65
CA0078330	480	0.19
CA0004995	418	0.71
CA0047899	248	0.95
CA0084476	216	2.15
CA0078034	194	0.73
CA0107999	191	1.77
CA0077828	184	0.38
CA0085201	117	0.095
CA0077836	115	1.57
CA0024490	0.033	4.40E-07
CA0005241	0	0
CA0022977	0	0
CA0022377	0	0
CA0023333	0	0.71
CA0049675	0	0
CA0059501	0	0
CA0064556	0	0
CA0077691	0	8.45
CA0077950	0	5.078

E-35 October 2017

Appendix E10 - Default N Load Factor For Wastewater Calculations

203,953,373		2586.50
CA0110116	0	0.34
CA0108944	0	0
CA0081485	0	0

E-36 October 2017

Appendix E11 – Additional References

Midwest Research Institute (MRI). 1988. Gap Filling PM₁₀ Emission Factors for Selected Open Area Dust Sources Final Report. EPA Contract No. 68-02-4395. March 1. EPA 450/4-88-003.

United States Environmental Protection Agency (US EPA). 1992. Fugitive Dust Background Document and technical Information Document for Best Available Control Measures. Research Triangle Park, NC. Office of Air Quality Planning and Standards. EPA 450/2-92-004. September.

US EPA. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources. Available online at: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors#5thed

E-37 October 2017