Tool to Estimate Cost Effectiveness of Emission Reductions in the Residential and Commercial Sector

Scott A. Epstein, Ph.D. Marc Carreras Sospedra, Ph.D. August 30th, 2017

2016 AQMP Measures Related to Commercial and Residential Appliances

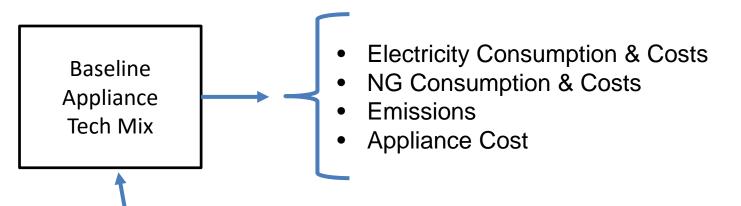
Number	Title	NOx Emission Reductions (tpd) (2023/2031)
CMB-02	Emission Reductions from Replacement with Zero or Near- Zero NOx Appliances in Commercial and Residential Applications	1.1/2.8
CMB-04	Emission Reductions from Restaurant Burners and Residential Cooking	0.8/1.6
ECC-03	Additional Enhancements in Reducing Existing Residential Building Energy Use	1.2/2.1

Project Objectives

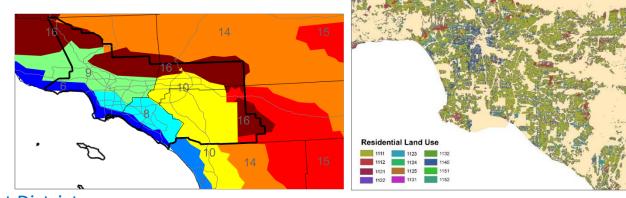
- Determine the most cost-effective strategies for NOx and GHG emission reductions from the commercial and residential sector
 - Previous analyses have focused on GHG emissions and energy savings
- Holistically determine where to allocate incentive funds to maximize NOx and GHG benefits and minimize energy costs for the consumer
- Inform potential regulatory approaches for CMB-02 in the commercial and residential sectors

Implementation

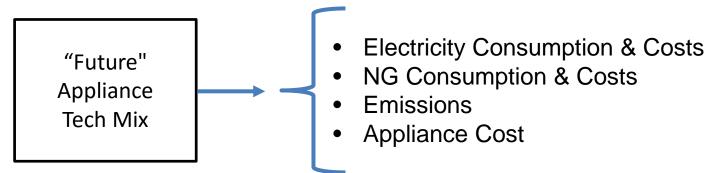
- Create a program with a graphical user interface (GUI) that allows the user to analyze the effects of changing appliance technology penetration
 - Program would be designed in-house with counsel from the advisory group and assistance from technical experts
- Tool inputs
 - User would enter the current and future technology mix, emission factors, efficiency, installation costs, and lifetime (defaults provided)
 - User would select the presence and parameters for rooftop solar, battery storage, net metering, and/or electric vehicle charging
 - User would specify the source of the additional energy requirements
 - Advanced users would be able to modify electric and gas rate schedules



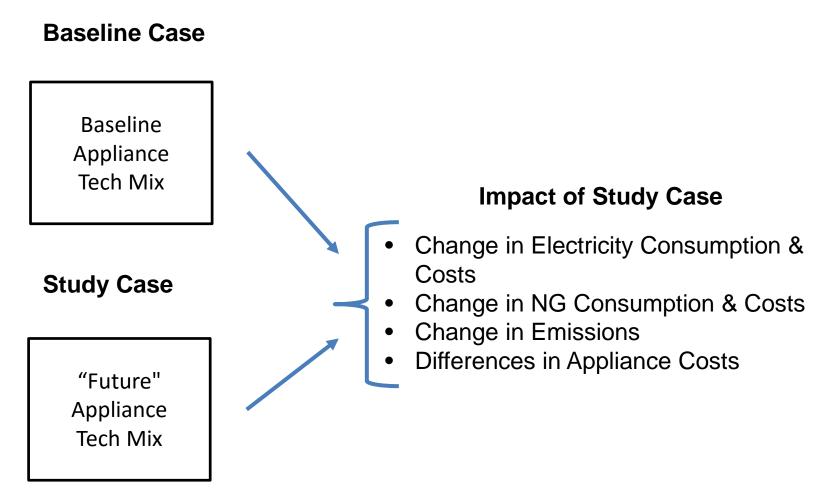
Implementation


- Tool Outputs
 - Change in NOX (in-Basin) and GHG (life cycle) between baseline and future case
 - Initial costs for appliance replacement
 - Change in energy bills for the consumer
 - Optimal number of solar panels and/or batteries to minimize cost to the consumer
 - Cost effectiveness of NOX and GHG reductions
- Other model applications
 - Determine formulation of electricity rate structures to incentivize specific technologies

Baseline Case



- Housing type: single-, multi-family, mobile home
- Climate zone



Baseline Appliance Tech Mix Baseline Appliance Tech Mix Baseline Appliance Tech Mix Baseline Appliance Tech Mix Baseline Appliance Study Case

Impact of Study Case Additional electricity: Change in Electricity Consumption Peaker plant, grid, solar panel Change in NG Consumption Changes in emissions Change in Emissions Change in hourly demand? **Differences in Appliance Costs** Changes in utility rates Additional technology: Battery, fuel cell? Changes in NG extraction/transmission/distribution emissions? Change in monthly demand: changes in utility rates Changes in appliance efficiency Changes in emission factors (regulations?) Replacement at end of life vs early replacement South Coast Air Quality Management District

Discussion Topics

- General suggestions from the workgroup
- Refer to the tool as a Emissions Lifecycle Analysis?
- Potential additions/modifications to the approach?

