SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar CA 91765-1482

MONITORING & ANALYSIS REPORT OF LABORATORY ANALYSIS

Page 1 of 2

TO Cher Snyder, Assistant DEO	LABORATORY NO	1607332
Engineering & Compliance		
	DATE RECEIVED	03/14/2016
SAMPLE DESCRIBED AS		
One Summa Canister, 24 h sample	FACILITY ID NO	NA
	REQUESTED BY	Sumner Wilson
SAMPLING LOCATION		
Reseda Station	ST NO / PROJECT	NA
18328 Gault St		
Los Angeles, CA 91335		

Carbon monoxide (CO), methane (CH₄), carbon dioxide (CO₂), ethane (C₂H₆), and non-methane non-ethane organic carbon (NM/NEOC) in ppmvC by SCAQMD Method 25.1 (TCA FID).

Type	Canister
Number	54186
Pressure (Torr)	740
CO, ppm	< 3
CH ₄ , ppm	2
CO ₂ , ppm	428
Ethane, ppmvC	< 1
NM/NEOC, ppmvC	< 1

Date Approved: 3 18

Approved By:

Rudy Eden, Senior Manager

Laboratory Services

909-396-2391

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar CA 91765-1482

MONITORING & ANALYSIS QUALITY CONTROL SUMMARY

Page 2 of 2

SAMPLE DESCRIBED AS

LABORATORY NO

1607332

One Summa Canister, 24 h sample

REQUESTED BY

Sumner Wilson

Carbon monoxide (CO), methane (CH₄), carbon dioxide (CO₂), ethane (C₂H₆), and non-methane non-ethane organic carbon (NM/NEOC) in ppmvC by SCAQMD Method 25.1 (TCA FID).

QUALITY CONTROL -- End of run control recovery

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0001240	MDI	Theoretical	Maaaaaad		QC Limit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CC91340	MDL	Theoretical	Measured	Difference	±5% or ± 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO, ppmvC	0.3	10.40	9.85	-5.26	PASS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₄ , ppmvC	0.3	10.17	10.62	4.39	PASS
C2H6, ppmvC 0.2 11.00 10.44 -5.14 PASS NM/NEOC, ppmvC 0.2 10.64 10.24 -3.75 PASS CC135067 MDL Theoretical Measured Difference Difference ±5% or ± 1 CO, ppmvC 0.3 10100 9791 -3.06 PASS CH4, ppmvC 0.3 9950 10150 2.01 PASS CO2, ppmvC 0.4 10100 9783 -3.13 PASS C2H4, ppmvC 0.4 NA NA NA NA C2H6, ppmvC 0.2 9940 9960 0.20 PASS	CO ₂ , ppmvC	0.4	10.38	10.57	1.85	PASS
NM/NEOC, ppmvC 0.2 10.64 10.24 -3.75 PASS CC135067 MDL Theoretical Measured Difference ±5% or ± 1 CO, ppmvC 0.3 10100 9791 -3.06 PASS CH ₄ , ppmvC 0.3 9950 10150 2.01 PASS CO ₂ , ppmvC 0.4 10100 9783 -3.13 PASS C ₂ H ₄ , ppmvC 0.4 NA NA NA NA C ₂ H ₆ , ppmvC 0.2 9940 9960 0.20 PASS	C ₂ H ₄ , ppmvC	0.4	NA	NA	NA	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂ H ₆ , ppmvC	0.2	11.00	10.44	-5.14	PASS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NM/NEOC, ppmvC	0.2	10.64	10.24	-3.75	PASS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Percent	QC Limit
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC135067	MDL	Theoretical	Measured	Difference	$\pm 5\%$ or ± 1
CO2, ppmvC 0.4 10100 9783 -3.13 PASS C2H4, ppmvC 0.4 NA NA NA NA C2H6, ppmvC 0.2 9940 9960 0.20 PASS	CO, ppmvC	0.3	10100	9791	-3.06	PASS
C2H4, ppmvC 0.4 NA NA NA NA C2H6, ppmvC 0.2 9940 9960 0.20 PASS	CH ₄ , ppmvC	0.3	9950	10150	2.01	PASS
C ₂ H ₆ , ppmvC 0.2 9940 9960 0.20 PASS	CO ₂ , ppmvC	0.4	10100	9783	-3.13	PASS
	C ₂ H ₄ , ppmvC	0.4	NA	NA	NA	NA
NM/NEOC, ppmvC 0.2 10000 9885 -1.15 PASS	C ₂ H ₆ , ppmvC	0.2	9940	9960	0.20	PASS
	NM/NEOC, ppmvC	0.2	10000	9885	-1.15	PASS

DATE ANALYZED REFERENCE NO:

03/14/2016 16QM2AA

QM2-101-88

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT SAMPLE ANALYSIS REQUEST

GPS (34.199225, -118.532743)

TO: SCAQMD LAB: ⊠	OTHER:	: 🗆				
SOURCE NAME: Southern California Gas Co. I.D. No.						
Source Address: 12801 Tampa Ave			City:	Porter Ranch		
Mailing Address:			City:	Zip:	91326	
Contact Person: Title: Tel:						
Analysis Requested by:	Sumner V	Wilson	Date:	3/14/16	*	
Approved by: Jase	on Low O	ffice:	11/13/19	Budget #:	44716	
REASON REQUESTED: Court/Hearing Board Permit Pending Hazardous/Toxic Spill Suspected Violation Rule(s) Other						
Sample Collected by: Qian Zhou Date: 3/14/16 Time: 9:40am REQUESTED ANALYSIS: PAMS analysis						
City/Location	Can#	Start day	/ time/ duration	Start vac	End Press	
Reseda Station	54186	3/13/16 /	00:00 / 24 hours	<-30"	+15	
Relinquished by	Received	by	Firm/Agency	Date	Time	
2hong can	Ningging Ra.		SCAQMD Lab	3114/2016	11:30	
Remarks: Daily scheduled sample Reseda Station – 18328 Gault St, L				,		