SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar CA 91765-1482

MONITORING & ANALYSIS REPORT OF LABORATORY ANALYSIS

Page 1 of 2

Jason Low	LABORATORY NO	1621738
Atmospheric Measurements Manager		
Science and Technology Advancement	DATE RECEIVED	08/05/2016
PLE DESCRIBED AS		
24 hour sample	FACILITY ID NO	NA
Canister 54730		
	REQUESTED BY	Sumner Wilson
PLING LOCATION		7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Highlands Community Center	ST NO / PROJECT	NA
	Atmospheric Measurements Manager Science and Technology Advancement PLE DESCRIBED AS 24 hour sample Canister 54730 PLING LOCATION	Atmospheric Measurements Manager Science and Technology Advancement PLE DESCRIBED AS 24 hour sample Canister 54730 REQUESTED BY PLING LOCATION

Carbon monoxide (CO), methane (CH₄), carbon dioxide (CO₂), ethane (C₂H₆), and non-methane non-ethane organic carbon (NM/NEOC) in ppmvC by SCAQMD Method 25.1 (TCA FID).

Type	Canister
Number	54730
Pressure (Torr)	760
CO, ppm	5
CH ₄ , ppm	3
CO ₂ , ppm	421
Ethane, ppmvC	< 1
NM/NEOC, ppmvC	< 1

Date Approved: 8 11/16

Approved By:

Solomon Teffera, Acting Senior Manager

Laboratory Services 909-396-2199

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar CA 91765-1482

MONITORING & ANALYSIS QUALITY CONTROL SUMMARY

Page 2 of 2

SAMPLE DESCRIBED AS

LABORATORY NO

1621738

24 hour sample Canister 54730 REQUESTED BY

Sumner Wilson

Carbon monoxide (CO), methane (CH₄), carbon dioxide (CO₂), ethane (C₂H₆), and non-methane non-ethane organic carbon (NM/NEOC) in ppmvC by SCAQMD Method 25.1 (TCA FID).

QUALITY CONTROL -- End of run control recovery

CC106783	MDL	Theoretical	Measured	Percent Difference	QC Limit ±5% or ± 1	
CO, ppmvC	0.4	1.92	2.20	14.44	PASS	
CH ₄ , ppmvC	0.3	2.02	1.95	-3.56	PASS	
CO ₂ , ppmvC	0.4	1.57	9.12	481.10	FAIL	
C ₂ H ₄ , ppmvC	0.4	NA	NA	NA	NA	
C ₂ H ₆ , ppmvC	0.4	2.03	1.77	-13.03	PASS	
NM/NEOC, ppmvC	0.5	2.03	1.88	-7.12	PASS	
				The state of the s		
				Percent	QC Limit	
CC12628	MDL	Theoretical	Measured	Difference	$\pm 5\%$ or ± 1	
CO, ppmvC	0.4	1036	1043	0.72	PASS	
CH ₄ , ppmvC	0.3	1068	1041	-2.56	PASS	
CO ₂ , ppmvC	0.4	1022	1023	0.05	PASS	
C ₂ H ₄ , ppmvC	0.4	NA	NA	NA	NA	
C_2H_6 , ppmvC	0.4	1044	1025	-1.85	PASS	
NM/NEOC, ppmvC	0.5	1024	1002	-2.14	PASS	

DATE ANALYZED REFERENCE NO:

08/05/2016 16QM2AD QM2-101-119

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT SAMPLE ANALYSIS REQUEST

\times	DIS
-	IN1
] LA
LA	ABO

SOURCE NAME:	Southern Calif	fornia Gas Co	I.D. No			
Source Address: 12801 Tampa	12801 Tampa Ave		City:	Porter Ran	ch	
Mailing Address:	l Lag		ity:	Zip:	91326	
Contact Person:						
Analysis Requested by: Sumner Wilson						
Approved by: Jason Lo	<u>w</u> Of	ffice:	I	Budget #:	44716	
REASON REQUESTED: Court	Hearing Board	Permit	Pending	Hazardous/Tox	ic Spill	
Suspected Violation Rule(s)		Other			
Samuela Callacted by:	Dian Than	Datas	9/5/16	Time:	11.45	
Sample Collected by:	Qian Zhou	Date:	8/5/16	Time:	11:45	
R	EQUESTED A	ANALYSIS:	PAMS analysis			
City/Location	Can#	Start day	/ time/ duration	Start vac	End vac	
Highlands Community	54730	8-4-16/0	00:00 / 24 hours	-30"	+13	
	4 6		1 . 1 . 1			
Relinquished by	shed by Received by		Firm/Agency	Date	Time	
zhingien >	when		SCAQMD Lab	8/5/2016	o 15:25	
U	<u>dana.</u>		1709, 170	1		
		A11.1				
Remarks 1:6 scheduled samples from tr	ailer					
Highlands community pool parking lot. A Left sampler, sn 5624	Address: 12378 F	High Glen Way,	Northridge CA 91326 (a	cross from 1237	77)	