Appendix B. Refinery Identification Maps

• • • Appendix B

Appendix C. AERMOD Modeling Contours

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data

Worst-Case Scenario Using 2015 Emissions and 2012-2016 MET Data