

## Volatility of Organic Compounds: Contribution to Ozone and PM<sub>2.5</sub>

Scott A. Epstein Ph.D.
Air Quality Specialist
Planning, Rule Development, and Area Sources
South Coast Air Quality Management District

#### **Outline**

- Volatility of Organic Compounds
- Measurements and Predictions of Vapor Pressure for Relevant Compounds
- Fate of Organic Compounds in the Atmosphere
  - Considerations for ozone production
  - Considerations for PM<sub>2.5</sub> production

#### Organic Compounds in the Atmosphere

- Organics are molecules containing carbon
- May exist in the liquid phase, gas phase, and/or particle phase depending on volatility
- Typically classified by volatility





## Quantification of Volatility

- Vapor Pressure, PVAP [Pa]
  - Measure of the escaping tendency of a liquid
  - High vapor pressure indicates high volatility
- Saturation Concentration (C\*) [μg/m³]
  - Vapor pressure in mass concentration units

$$C^* = \frac{P^{VAP} \cdot Mw}{R_{gas} \cdot T}$$

### LVP-VOC Criteria Comparison



## Measurements and Predictions of Vapor Pressure

- Vapor pressures routinely measured in the laboratory
  - Measurement of IVOCs and SVOCs can be difficult
- Many techniques are available to predict vapor pressure from chemical structure and/or boiling points
  - The MPBPVP module in EPI Suite from US EPA is used to estimate vapor pressures of compounds without published values



### **Estimation Accuracy of MPBPVP**





Source: Measured and Modeled Vapor Pressures from USEPA EPI Suite

#### Vapor Pressures of Relevant Compounds





#### Volatility is Temperature Dependent





### Reactivity of Organic Compounds

- Ozone Formation
  - >Species dependent
  - Complex function of NOx and VOC concentrations, sunlight intensity, and temperature
  - ➤ VOCs, IVOCs, and SVOCs can produce Ozone



## Ozone Reactivity is Not a Strong Function of Volatility



## Reactivity of Organic Compounds

- PM<sub>2.5</sub> Formation
  - >Species dependent
  - ➤ VOCs, IVOCs, and SVOCs can produce PM<sub>2.5</sub>
  - ▶Primary Organic Aerosol (POA) is formed at source of emissions
  - ➤ Secondary Organic Aerosol (SOA) is formed from the oxidation of organic gases in the atmosphere





# IVOC and SVOC Concentrations in Pasadena



## IVOC and SVOC Concentrations in Pasadena



# IVOCs and SVOCs Responsible for Majority of Ambient SOA in SoCAB





#### Conclusions

- Volatility of organic compounds can be measured and predicted
- IVOC and SVOC emissions inventory needed for ozone and PM<sub>2.5</sub> modeling
  - Requires species-dependent and temperature-dependent evaporation rates
  - Should account for mixing effects in complex mixtures
  - Will improve accuracy of regional air quality modeling
- An accurate inventory will require more measurements of VOC, IVOC, SVOC emissions and ambient concentrations