# Analysis of semi-volatiles in dried paint films

Polymers and Coatings Laboratory
Department of Chemistry and Biochemistry
California Polytechnic State University
San Luis Obispo, CA

#### Reasons for study

- Both regulatory agencies and industry desire a method to characterize semi-volatiles
- Study can possibly help classify semi-volatiles based on amounts remaining in films as a function of time or temperature
- ACA has submitted a list of potential semi-volatiles for consideration to SCAQMD

#### ACA priority semi-volatiles

| Vantex-T                           | Pentaethylene glycol              | Poly(neopentyl) glycols                               |
|------------------------------------|-----------------------------------|-------------------------------------------------------|
| 2-ethylhexyl benzoate (Velate 368) | 2-amino-1-butanol                 | Lubrizol GRB3                                         |
| Polyethylene glycol                | 2-amino ethanol                   | Nuosperse AQ100<br>Nuosperse AQ200<br>Nuosperse AQ300 |
| Optifilm 400                       | Soy oil                           | PEG300 (covered under Polyethylene glycol?)           |
| EPS 9147                           | HEEU (hydroxyethyl ethylene urea) | Canola oil                                            |
| Triethylene glycol                 | 2-Hydroxyethyl urea               | Tung oil                                              |
| Tetraethylene glycol               | Acrylates                         | Biocides                                              |

#### TGA Results for Semi-volatiles



### Who should develop the method?

- SCAQMD and EPA prefer industry do majority of film extraction method development
- Industry has smaller list of target matrices
- Some companies have suggested "universal" matrices be developed for different classes of coatings
- Preliminary work has been done by some companies, regulatory agencies, and independent laboratories

### Summary of proposed method

- A known quantity of the target substance is added to a formulated coating representative of the type of coating for which the substance is designed.
- Solids determinations are done at 110°C for times ranging from 0.5 to 8 hours.
- The films remaining after solids determination are placed in sealed vials and solvent is added to extract any remaining target substance.
- Internal standard is added and the solution is analyzed using ASTM D6886 or AQMD Method 313

### Example paint preparation

- A new coalescent to be tested is added at 1% by weight to a near-zero VOC coating known not to contain the new product (the amount added may need to be adjusted)
- The coating sample with the target substance is analyzed using ASTM D6886 or AQMD Method 313
- The amount of the target substance in the coating is verified by comparing to the known formulated value.
- The relative response factor of the target substance should have been determined previously.

### Solids samples preparation

- Several samples are prepared according to ASTM Method D2369 for solids determination.
- ♦ All samples are placed in an oven at 110°C.
- ♦ After 30 minutes, three samples are removed and weighed.
- ◆ Three more samples are withdrawn after one hour, two hours and eight hours.
- ♦ The fraction solids is determined for each sample.

### Analysis of films

- Immediately after the triplicate determination of the solids content of the coating at a particular temperature, the films are removed from the pans and placed in a 40 mL vial and sealed with a septum cap
- A known weight of film is combined with solvent and internal standard in a vial.
- Sample is sonicated and shaken to extract semi-volatiles
- Sample of resulting solution is analyzed by ASTM D6886 or AQMD
   Method 313 for fraction of each semi-volatile remaining

#### Sample study

- Commercially available semi-gloss and flat architectural coatings (white) listed as "zero VOC" were purchased
- Paints were analyzed using ASTM D6886 to determine VOC content and identity of any VOCs present
- DiBuPh (BP 340 C) has volatility similar to methyl palmitate (BP 335 C); TGA shows diBuPh slightly less volatile than MePalm
- Triethanol amine (TEA), 2-amino-2-ethyl-1,3-propanediol (AEPD), tetraethylene glycol (EG4) and pentaethylene glycol (EG5) also studied in semi-gloss paint <sup>10</sup>

#### Preparation of spiked paints

- ♦ 650 grams paint were weighed into 1 pint paint can
- Approximately 1% TX, 0.5 % Ve368 and 0.5% DiBuPh were added to the paint
- ◆ The paint and additives were dispersed for 30 minutes using a high-speed paint disperser and the can was sealed
- Before use the paints were shaken for 6 minutes on a shaker
- Paints were analyzed using ASTM D6886

#### Preparation of paint films

- Preliminary studies showed little useful information obtained from study of film heated for longer than two hours at 110°C
- ♦ Samples were prepared using Method D2369 for solids analysis
  - 0.5-1.0 gram of paint added to weighed aluminum pan
  - 3 mL water added and mixture dispersed using paper clip
  - Also tried without water and obtained same results
- ♦ Samples heated for 0.5, 1.0 and 2.0 hours then reweighed
- Solids fraction at each time determined

#### Preparation of film samples

- After cooling, films were removed from pans by peeling or scraping taking care to remove as much film as possible but no aluminum
- ◆ Each film after removal was transferred to a tared vial. Film samples typically weighed 0.3-0.5 g.
- Solvent (either acetone or acetone/methanol mixture) containing 1.5 mg EGDE internal standard was added
- Samples were capped and sonicated for 30 minutes then shaken for one hour on vortex mixer.

#### GC analysis of films

- Samples of film extract solution were analyzed using ASTM D6886.
   New DB5 column installed and response factors for analytes were determined just prior to measurement.
- ♦ Analysis was performed in triplicate and average fraction of each analyte in the solid film sample was determined.
- Fraction in solid film sample multiplied by fraction solids in paint (determined at same heating time) to determine fraction of original analyte in paint remaining in the film.
- Divide fraction remaining in film by fraction in paint to obtain fraction of initial semi-volatile remaining.

# Initial results for two spiked commercial paints

| Flat Interior Latex Paint          |       |       |        |
|------------------------------------|-------|-------|--------|
| fraction initial analyte remaining |       |       |        |
| time/hr                            | TX    | VE368 | diBuPh |
| 0.5                                | 0.118 | 0.276 | 0.962  |
| 1.0                                | 0.034 | 0.084 | 0.514  |
| 2.0                                | 0.005 | 0.007 | 0.216  |

| Semi-gloss Interior Latex Paint |                                    |       |        |
|---------------------------------|------------------------------------|-------|--------|
|                                 | fraction initial analyte remaining |       |        |
| time/hr                         | TX                                 | VE368 | diBuPh |
| 0.5                             | 0.302                              | 0.491 | 0.978  |
| 1.0                             | 0.262                              | 0.359 | 0.842  |
| 2.0                             | 0.029                              | 0.036 | 0.372  |

# Results for amines and polyethylene glycols

| Semi-gloss Interior latex Paint |                                    |       |       |
|---------------------------------|------------------------------------|-------|-------|
|                                 | fraction initial analyte remaining |       |       |
| time/hr                         | TEA                                | EG4   | DBP   |
| 0.5                             | 0.519                              | 0.653 | 0.893 |
| 1.0                             | 0.262                              | 0.195 | 0.548 |
| 2.0                             | 0.015                              | 0.005 | 0.127 |

| Semi-gloss Interior latex Paint |                                    |       |       |
|---------------------------------|------------------------------------|-------|-------|
|                                 | fraction initial analyte remaining |       |       |
| time/hr                         | AEPD                               | EG5   | DBP   |
| 0.5                             | 0.376                              | 0.920 | 0.999 |
| 1.0                             | 0.153                              | 0.491 | 0.504 |
| 2.0                             | 0.098                              | 0.338 | 0.320 |

## Results for flat latex paint films TX, VE368



## Results for semi-gloss latex films TX, VE368



#### Results for TEA, EG4



#### Results for AEPD, EG5



#### Comments on results

- Decrease in fraction of all semi-volatiles in films with increased heating time
- ▲ Larger fractions remained in semi-gloss films than in flat films
- Results are consistent from both types of paint films
- Both qualitative and quantitative statements of relative volatility of these materials in these films can be made
- Pentaethylene glycol shown to have same volatility behavior in film as dibutyl phthalate (classified as non-VOC by method 313).

#### **Future Work**

- Similar studies need to be done on other target semi-volatiles
- Need to determine a criterion for judging a material to be non-volatile (or partially volatile?)
- May need to look at other temperatures/times or extracting solvents
- Need industry and regulatory agencies to give their input