Proposed Amended Rule 1134
Working Group #2

April 26, 2018
Summary of previous working group meeting

- Emissions from PAR 1134 Turbines

- Initial BARCT Assessment

- Initial Rule Concepts
Presented current Rule 1134 applicability and requirements
- Examined potential universe of equipment subject to PAR 1134
 - Received request from stakeholders to include emission information
- Provided overview BARCT determination process
Emissions from PAR 1134 Turbines
Emissions from PAR 1134 Turbines - Overview

• Per a stakeholder request, presenting annual emission information for gas turbines subject to PAR 1134
 ▶ Turbines reviewed by RECLAIM versus non-RECLAIM and fuel type
 ▶ Natural gas, landfill gas, sewage digester gas, and process gas
• Total NOx emissions from PAR 1134 equipment is approximately 1,000 tons per year (2015 data)
 ▶ Not including data for emergency turbines (20 units)
 ▶ Data missing from one simple cycle turbine (no data since 2001)
Overall PAR 1134 Emissions

NOx (Tons Per Year)

- Natural Gas - RECLAIM, 404, 39%
- Natural Gas - Non-RECLAIM, 176, 17%
- Landfill Gas - Non-RECLAIM, 156, 15%
- Sewage Digester Gas - Non-RECLAIM, 137, 13%
- Process Gas - RECLAIM, 172, 16%

Total PAR 1134 NOx inventory approximately 1,045 tons per year (2015 data)
Initial BARCT Assessment
BARCT

• Is defined in the California Health and Safety Code Section 40406
 ▶ “…an emission limitation that is based on the maximum degree of reduction achievable, taking into account environmental, energy, and economic impacts by each class or category of source.”
• BARCT is reassessed periodically and is updated as technology advances
Guiding Principles for Establishing BARCT Levels

• Consistent with state law, BARCT levels will take into account:
 ▷ Environmental impacts;
 ▷ Energy impacts; and
 ▷ Economic impacts

• Must adhere to Health and Safety Code Section 40920.6, which establishes requirements prior to adopting rules or regulations regarding retrofit control technologies
Guiding Principles for Establishing BARCT Levels (continued)

• In addition to the overall cost-effectiveness, additional considerations for:
 ▶ Outliers
 ▶ Stranded assets
 ▶ Incremental cost-effectiveness
 ▶ Accounting for recent installations – implementation of previous requirements – BARCT or BACT
Background on BARCT Assessment for Turbines

- Rule 1134 BARCT Assessment
 - 1989, with the adoption of Rule 1134
- 2014 Norton Engineering analysis indicated 2 ppm NOx level can be achieved by retrofit with catalyst modifications and additions
 - One PAR 1134 natural gas combined cycle turbine currently permitted at \(\leq 2 \) ppm NOx
- Decision to conduct a new BARCT assessment for this rulemaking
BARCT Analysis Approach for PAR 1134

1. Identify Emission Levels Achieved In Practice
2. Assess Rules in Other Air Districts Regulating Same Equipment
3. Technology Assessment
4. Establishing the BARCT Emission Limit and Other Considerations
5. Cost-Effectiveness
Overview of Achieved In Practice Equipment

- Identified turbines by lowest permit emission limit
- Grouped equipment by
 - Fuel type – natural gas, landfill gas, sewage digester gas, process gas
 - Equipment type – simple cycle, combined cycle
- Identified equipment with type of control
- Identified if emission limit is based on retrofit or replacement
- Identified year emission limit achieved
- Did not distinguish between RECLAIM and non-RECLAIM
Overview of Simple Cycle Natural Gas Turbines

Summary for Natural Gas Simple Cycle Turbines

- 19 natural gas simple cycle turbines
- 13 turbines ≥ 40 ppm
- 7 turbines < 10 ppm
- BARCT analysis will focus on 7 turbines < 10 ppm
NOx Levels for Simple Cycle Natural Gas Turbines

<table>
<thead>
<tr>
<th>Size (MMBtu/hr)</th>
<th>Output (MW)</th>
<th>NOx Limit (ppm)</th>
<th>Year Limit Achieved</th>
<th>Control Configuration</th>
<th>Replacement or Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>407.7*</td>
<td>39</td>
<td>2.5</td>
<td>2002</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>126</td>
<td>10</td>
<td>2.5</td>
<td>2002</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>472.5</td>
<td>39</td>
<td>5</td>
<td>2002</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>43.8</td>
<td>4.6</td>
<td>5</td>
<td>2009</td>
<td>Ultra Lean Premix</td>
<td>Replacement</td>
</tr>
<tr>
<td>1080</td>
<td>158</td>
<td>7.5</td>
<td>1989</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>250.6</td>
<td>23.1</td>
<td>9</td>
<td>1988</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>229</td>
<td>22.4</td>
<td>9</td>
<td>1987</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
</tbody>
</table>

*Not in operation since 2017, still representative of “Achieved in Practice”

Summary NOx Concentration and Pollution Controls for Natural Gas Simple Cycle Turbines

- **2.5 PPM**: Replacement using SCR or SCR and water injection (2 units)
- **5 PPM**: Replacement using SCR and combustion modifications (2 units)
- **7.5 PPM**: Replacement using SCR and water injection (1 unit)
- **9 PPM**: Replacement using SCR and water injection (2 units)
Overview of Combined Cycle Natural Gas Turbines

Summary for Natural Gas Combined Cycle Turbines
- 14 natural gas combined cycle turbines
- 5 turbines ≥ 20 ppm
- 9 turbines < 10 ppm
- BARCT analysis will focus on 9 turbines <10 ppm
NOx Levels for Combined Cycle Natural Gas Turbines

<table>
<thead>
<tr>
<th>Size (MMBtu/hr)</th>
<th>Output (MW)</th>
<th>NOx Limit (ppm)</th>
<th>Year Limit Achieved</th>
<th>Control Configuration</th>
<th>Replacement or Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>13.5</td>
<td>2.0</td>
<td>2013</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>162</td>
<td>13.4</td>
<td>2.5</td>
<td>2010</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>57</td>
<td>3.2</td>
<td>2.5</td>
<td>2005</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>57</td>
<td>3.2</td>
<td>2.5</td>
<td>2005</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>113.8</td>
<td>5.6</td>
<td>2.5</td>
<td>2005</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>113.8</td>
<td>5.6</td>
<td>2.5</td>
<td>2005</td>
<td>SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>221</td>
<td>21.7</td>
<td>9</td>
<td>1990</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>46.2</td>
<td>2.8</td>
<td>9</td>
<td>1992</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>49.1</td>
<td>2.9</td>
<td>9</td>
<td>1992</td>
<td>Water Injection and SCR</td>
<td>Replacement</td>
</tr>
</tbody>
</table>

Summary NOx Concentration and Pollution Controls for Natural Gas Combined Cycle Turbines

<table>
<thead>
<tr>
<th>NOx Concentration</th>
<th>Replacement Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 PPM</td>
<td>Replacement using SCR (1 Unit)</td>
</tr>
<tr>
<td>2.5 PPM</td>
<td>Replacement using SCR (5 Units)</td>
</tr>
<tr>
<td>9 PPM</td>
<td>Replacement using Water Injection and SCR (3 Units)</td>
</tr>
</tbody>
</table>
NOx Levels for Landfill Gas Turbines

<table>
<thead>
<tr>
<th>Turbine Type</th>
<th>Turbines at Location</th>
<th>Size (MMBtu/hr)</th>
<th>Output (MW)</th>
<th>NOx Limit (ppm)</th>
<th>NOx Limit Tested (ppm)</th>
<th>Year Limit Achieved</th>
<th>Control Configuration</th>
<th>Replacement or Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>2</td>
<td>53</td>
<td>4.6</td>
<td>25</td>
<td>5</td>
<td>2013</td>
<td>Ultra Lean Premix</td>
<td>Replacement</td>
</tr>
<tr>
<td>Simple</td>
<td>5</td>
<td>61</td>
<td>4.9</td>
<td>12.5</td>
<td>6</td>
<td>2017</td>
<td>None listed</td>
<td>Replacement</td>
</tr>
<tr>
<td>Combined</td>
<td>2</td>
<td>216</td>
<td>14.4</td>
<td>6</td>
<td>6</td>
<td>1996</td>
<td>Water Injection/SCR</td>
<td>Replacement</td>
</tr>
<tr>
<td>Simple</td>
<td>3</td>
<td>52</td>
<td>4.6</td>
<td>25</td>
<td>7</td>
<td>2013</td>
<td>Lean mix</td>
<td>Replacement</td>
</tr>
</tbody>
</table>

Summary NOx Concentration and Pollution Controls for Landfill Gas Turbines

- **5 PPM**: Replacement using Ultra Lean Premix (2 Units)
- **6 PPM**: Replacement - no SCR (5 units)
- **6 PPM**: Replacement using Water Injection and SCR (2 units)
- **7 PPM**: Replacement using Lean mix (3 units)
Sewage Digester Gas

<table>
<thead>
<tr>
<th>Size (MMBtu/hr)</th>
<th>Output (MW)</th>
<th>Original NOx Limit (ppm)</th>
<th>NOx Limit (ppm)</th>
<th>Installation Date</th>
<th>Retrofit Date</th>
<th>Control Configuration</th>
<th>Replacement or Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.5*</td>
<td>11.4</td>
<td>25</td>
<td>18.8</td>
<td>2011</td>
<td>2014</td>
<td>SCR</td>
<td>Retrofit</td>
</tr>
</tbody>
</table>

* Three identical units at one facility

Process Gas

<table>
<thead>
<tr>
<th>Size (MMBtu/hr)</th>
<th>Output (MW)</th>
<th>NOx Limit (ppm)</th>
<th>Year Limit Achieved</th>
<th>Control Configuration</th>
<th>Replacement or Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.7</td>
<td>5.7</td>
<td>5</td>
<td>2009</td>
<td>Dry low NOx/SCR</td>
<td>Replacement</td>
</tr>
</tbody>
</table>
Since 1989, only one set of PAR 1134 turbines have undergone retrofit to reduce NOx emissions

- Three sewage digester gas turbines in 2014
- Over same time period, 29 turbines have been replaced

<table>
<thead>
<tr>
<th>Turbine Type</th>
<th>Achieved In Practice – Retrofit (NOx ppm @ 15% O2)</th>
<th>Achieved In Practice – Replacement (NOx ppm @ 15% O2)</th>
<th>Percent of Turbines Meeting Achieved in Practice Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>None</td>
<td>≤ 9</td>
<td>64% (9 turbines)</td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>None</td>
<td>≤ 9</td>
<td>50% (7 turbines)</td>
</tr>
<tr>
<td>Simple Cycle</td>
<td>None</td>
<td>≤ 9</td>
<td>75% (12 turbines)</td>
</tr>
<tr>
<td>Landfill Gas</td>
<td>None</td>
<td>≤ 9</td>
<td></td>
</tr>
<tr>
<td>Sewage Digester Gas</td>
<td>≤ 18.8</td>
<td>None</td>
<td>50% (3 turbines)</td>
</tr>
<tr>
<td>Process Gas</td>
<td>None</td>
<td>≤ 5</td>
<td>14% (1 turbine)</td>
</tr>
</tbody>
</table>
NOx Turbine Rule Limits in Other Districts

BAAQMD Reg 9 – Rule 9 (2006)*

Retrofit NOx limits effective in 2010

<table>
<thead>
<tr>
<th>Turbine Heat Input Rating (MM Btu/hr)</th>
<th>Natural Gas (ppm @ 15% O$_2$)</th>
<th>Refinery Gas, Waste Gas, LPG (ppm @ 15% O$_2$)</th>
<th>Non-gaseous Fuel (ppm @ 15% O$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 50</td>
<td>42</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>>50 - 150</td>
<td>25 - 42</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>>150 – 250</td>
<td>15</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>>250 – 500</td>
<td>9</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>> 500</td>
<td>5</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

*Currently under review

SJVAPCD Rule 4703 (2007)

Retrofit NOx limits effective in 2009

<table>
<thead>
<tr>
<th>Turbine Output Rating (MW)</th>
<th>Approximate Heat Input Rating (MM Btu/hr)**</th>
<th>Gas Fuel (ppm @ 15% O$_2$)</th>
<th>Liquid Fuel (ppm @ 15% O$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3</td>
<td>< 35</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>< 3 – 10 Pipeline</td>
<td>< 35 - 130</td>
<td>8 steady and 12 non-steady</td>
<td>25</td>
</tr>
<tr>
<td>< 3 – 10</td>
<td>< 35 - 130</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>> 10</td>
<td>> 130</td>
<td>3 - 5</td>
<td>25 - 42</td>
</tr>
</tbody>
</table>

**Non-regulatory: For comparison purposes only
BACT - Combined Cycle Natural Gas Turbines

<table>
<thead>
<tr>
<th>Year</th>
<th>Regulation</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>(major sources) Combined Cycle Gas Turbine</td>
<td>2.0 ppm @ 15% O$_2$, 1-hour rolling average</td>
</tr>
<tr>
<td>2016</td>
<td>Part D (minor source) Gas Turbines, Natural Gas Fired ≥ 3 MWe and < 50 MWe</td>
<td>[2.5 ppm @ 15% O$_2$] x [efficiency (%)/34%]</td>
</tr>
<tr>
<td>2016</td>
<td>Part D (minor source) Gas Turbines, Natural Gas Fired ≥ 50 MWe</td>
<td>2.5 ppm @ 15% O$_2$, 1-hour rolling avg; OR [2.0 ppm @ 15 % O$_2$, 3-hour rolling avg.] x [efficiency (%)/34%]</td>
</tr>
</tbody>
</table>
BACT - Simple Cycle Natural Gas Turbines

- **2004 SCAQMD LAER (major sources)**
 - 3.5 ppm @ 15% O₂, 3-hour rolling average

- **2016 BACT Guidelines Part D (minor source)**
 - Gas Turbines, Natural Gas Fired, ≥ 3 MWe and < 50 MWe
 - [2.5 ppm @ 15% O₂] x [efficiency (%)/34%]
 - Gas Turbines, Natural Gas Fired, ≥ 50 MWe
 - 2.5 ppm @ 15% O₂, 1-hour rolling avg; OR
 - [2.0 ppm @ 15 % O₂, 3-hour rolling avg.] x [efficiency (%)/34%]
BACT - Other Turbines

- Currently under review by SCAQMD BACT Team
- 2003 SCAQMD BACT/LAER
 - Gas Turbines, Digester Gas Fired
 - 25 ppm @ 15% O₂
 - No landfill gas fired turbine listed
 - No process gas fired turbine listed
Natural Gas Turbine Limit Progression

NOx Permit Limits Over Time

Summary NOx Permit Limits Over Time

- Since 2005, 11 replacement turbines permitted at ≤ 5 ppm
- Since 2009, 8 replacement turbines permitted at ≤ 2.5 ppm
BARCT Assessment Summary

- Achieved in practice limits have been demonstrated for several years for all fuel types
- BARCT assessment will focus on lowest emitting achieved in practice turbines
- BARCT assessment will consider replacement of turbines as well as retrofitting with additional control
 - Nearly all lowest emitting turbines have been replacements
 - Three sewage digester gas turbines have been retrofits
- Will present proposed BARCT limits and cost-effectiveness data at next working group meeting
Initial Rule Concepts
Initial Rule Concepts - Overview

• Initial rule concepts are provided to promote discussion
• Stakeholder input and further information can change initial concepts as they are developed into rule language
• Rule language likely to be provided at next working group
Initial Rule Concepts - *Applicability*

- All gas turbines and associated duct burners ≥ 0.3 MW
 - Duct burners included because they exhaust gas through same stack
 - In this case, facility based landing rules supersede general equipment rule
- Refineries covered under Rule 1109.1 and Electricity Generating Facilities covered under Rule 1135 will be excluded from PAR 1134
 - Rules 1109.1 and 1135 may reference the emission limits for equipment covered under PAR 1134
Initial Rule Concepts – *Emission Limits*

- Achieved in practice limits will be important factor in determining proposed limits
- Limits to allow for retrofit or replacement of turbines
- Cost-effectiveness and incremental cost-effectiveness information will be incorporated into proposal
- Limits averaged over one hour at 15% O_2
- Ammonia emission limit likely for new units
- Effective date still under consideration
 - AQMP goal of 5 tons per day of NOx reductions by 2025
 - AB 617 requirement of BARCT implementation by 2023
Initial Rule Concepts – Exemptions

- Remove Southeast Desert Air Basin (SDAB) and San Clemente Island exemptions
 - SDAB no longer part of SCAQMD
 - San Clemente Island no longer has turbines
- Maintain exemption for emergency units used less than 200 hours per year
Further Considerations

• Potential Start-Up and Shutdown requirements for new units
• Address low-use turbines operating less than 400 hours in calendar year
• Dual fuel turbines operating in location where natural gas is not available
• Others?
Schedule
Current Tentative Schedule

- Next Working Group Meeting: May 2018
- Public Workshop: 3rd Quarter 2018
- Stationary Source Committee: July 20, 2018
- Set Hearing: September 7, 2018
- Public Hearing: October 5, 2018
Contacts
PAR 1134 Development
Michael Morris, mmorris@aqmd.gov, (909) 396-3282
Uyen-Uyen Vo, uvo@aqmd.gov, (909) 396-2238

RECLAIM Questions
Gary Quinn, P.E. gquinn@aqmd.gov, (909) 396-3121
Kevin Orellana, korellana@aqmd.gov, (909) 396-3492
Tracy Goss, P.E. tgoss@aqmd.gov, (909) 396-3106

General Questions
Susan Nakamura, snakamura@aqmd.gov, (909) 396-3105